Acronym penalsrip, pen || inv srip Name (degenerate) pen atop inverted srip Circumradius ∞   i.e. flat in euclidean space Confer general polytopal classes: decomposition

It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.

Incidence matrix according to Dynkin symbol

```xo3ox3oo3ox&#x   → height = 0
(pen || inv srip)

o.3o.3o.3o.    | 5  * |  4 12  0  0 |  6 12 12 12  0  0  0  0 | 4 12 12  6  6  4 0  0 0 | 1 4  6  4 1 0
.o3.o3.o3.o    | * 30 |  0  2  4  2 |  0  1  4  4  2  2  4  1 | 0  2  2  4  4  2 1  2 2 | 0 1  2  1 2 1
---------------+------+-------------+-------------------------+-------------------------+--------------
x. .. .. ..    | 2  0 | 10  *  *  * |  3  3  0  0  0  0  0  0 | 3  6  3  0  0  0 0  0 0 | 1 3  3  1 0 0
oo3oo3oo3oo&#x | 1  1 |  * 60  *  * |  0  1  2  2  0  0  0  0 | 0  2  2  1  2  1 0  0 0 | 0 1  2  1 1 0
.. .x .. ..    | 0  2 |  *  * 60  * |  0  0  1  0  1  1  1  0 | 0  1  0  1  1  0 1  1 1 | 0 1  1  0 1 1
.. .. .. .x    | 0  2 |  *  *  * 30 |  0  0  0  2  0  0  2  1 | 0  0  1  0  2  2 0  1 2 | 0 0  1  1 2 1
---------------+------+-------------+-------------------------+-------------------------+--------------
x.3o. .. ..    | 3  0 |  3  0  0  0 | 10  *  *  *  *  *  *  * | 2  2  0  0  0  0 0  0 0 | 1 2  1  0 0 0
xo .. .. ..&#x | 2  1 |  1  2  0  0 |  * 30  *  *  *  *  *  * | 0  2  2  0  0  0 0  0 0 | 0 1  2  1 0 0
.. ox .. ..&#x | 1  2 |  0  2  1  0 |  *  * 60  *  *  *  *  * | 0  1  0  1  1  0 0  0 0 | 0 1  1  0 1 0
.. .. .. ox&#x | 1  2 |  0  2  0  1 |  *  *  * 60  *  *  *  * | 0  0  1  0  1  1 0  0 0 | 0 0  1  1 1 0
.o3.x .. ..    | 0  3 |  0  0  3  0 |  *  *  *  * 20  *  *  * | 0  1  0  0  0  0 1  1 0 | 0 1  1  0 0 1
.. .x3.o ..    | 0  3 |  0  0  3  0 |  *  *  *  *  * 20  *  * | 0  0  0  1  0  0 1  0 1 | 0 1  0  0 1 1
.. .x .. .x    | 0  4 |  0  0  2  2 |  *  *  *  *  *  * 30  * | 0  0  0  0  1  0 0  1 1 | 0 0  1  0 1 1
.. .. .o3.x    | 0  3 |  0  0  0  3 |  *  *  *  *  *  *  * 10 | 0  0  0  0  0  2 0  0 2 | 0 0  0  1 2 1
---------------+------+-------------+-------------------------+-------------------------+--------------
x.3o.3o. ..    ♦ 4  0 |  6  0  0  0 |  4  0  0  0  0  0  0  0 | 5  *  *  *  *  * *  * * | 1 1  0  0 0 0
xo3ox .. ..&#x ♦ 3  3 |  3  6  3  0 |  1  3  3  0  1  0  0  0 | * 20  *  *  *  * *  * * | 0 1  1  0 0 0
xo .. .. ox&#x ♦ 2  2 |  1  4  0  1 |  0  2  0  2  0  0  0  0 | *  * 30  *  *  * *  * * | 0 0  1  1 0 0
.. ox3oo ..&#x ♦ 1  3 |  0  3  3  0 |  0  0  3  0  0  1  0  0 | *  *  * 20  *  * *  * * | 0 1  0  0 1 0
.. ox .. ox&#x ♦ 1  4 |  0  4  2  2 |  0  0  2  2  0  0  1  0 | *  *  *  * 30  * *  * * | 0 0  1  0 1 0
.. .. oo3ox&#x ♦ 1  3 |  0  3  0  3 |  0  0  0  3  0  0  0  1 | *  *  *  *  * 20 *  * * | 0 0  0  1 1 0
.o3.x3.o ..    ♦ 0  6 |  0  0 12  0 |  0  0  0  0  4  4  0  0 | *  *  *  *  *  * 5  * * | 0 1  0  0 0 1
.o3.x .. .x    ♦ 0  6 |  0  0  6  3 |  0  0  0  0  2  0  3  0 | *  *  *  *  *  * * 10 * | 0 0  1  0 0 1
.. .x3.o3.x    ♦ 0 12 |  0  0 12 12 |  0  0  0  0  0  4  6  4 | *  *  *  *  *  * *  * 5 | 0 0  0  0 1 1
---------------+------+-------------+-------------------------+-------------------------+--------------
x.3o.3o.3o.    ♦ 5  0 | 10  0  0  0 | 10  0  0  0  0  0  0  0 | 5  0  0  0  0  0 0  0 0 | 1 *  *  * * *
xo3ox3oo ..&#x ♦ 4  6 |  6 12 12  0 |  4  6 12  0  4  4  0  0 | 1  4  0  4  0  0 1  0 0 | * 5  *  * * *
xo3ox .. ox&#x ♦ 3  6 |  3 12  6  3 |  1  6  6  6  2  0  3  0 | 0  2  3  0  3  0 0  1 0 | * * 10  * * *
xo .. oo3ox&#x ♦ 2  3 |  1  6  0  3 |  0  3  0  6  0  0  0  1 | 0  0  3  0  0  2 0  0 0 | * *  * 10 * *
.. ox3oo3ox&#x ♦ 1 12 |  0 12 12 12 |  0  0 12 12  0  4  6  4 | 0  0  0  4  6  4 0  0 1 | * *  *  * 5 *
.o3.x3.o3.x    ♦ 0 30 |  0  0 60 30 |  0  0  0  0 20 20 30 10 | 0  0  0  0  0  0 5 10 5 | * *  *  * * 1
```