Acronym pahtex prit
Name partially demitesseractic-expanded prit,
partially demitesseractic-contracted gidpith
Face vector 288, 624, 416, 80
Confer
uniform relative:
prit   gidpith  
general polytopal classes:
partial Stott expansions  

The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.


Incidence matrix according to Dynkin symbol

((wx3xx3oq *b3xx))&#zx   → height = 0
(tegum sum of (w,x,x)-tah and (x,x,x,q)-tico)

  o.3o.3o. *b3o.       | 96   * |  2  1   2  0  0  0 |  1  2  1  2  2  0  0  0 | 1 1  1  2 0
  .o3.o3.o *b3.o       |  * 192 |  0  0   1  1  1  1 |  0  0  1  1  1  1  1  1 | 0 1  1  1 1
-----------------------+--------+--------------------+-------------------------+------------
  .. x. ..    ..       |  2   0 | 96  *   *  *  *  * |  1  1  0  1  0  0  0  0 | 1 1  0  1 0
  .. .. ..    x.       |  2   0 |  * 48   *  *  *  * |  0  2  0  0  2  0  0  0 | 1 0  1  2 0
  oo3oo3oo *b3oo  &#x  |  1   1 |  *  * 192  *  *  * |  0  0  1  1  1  0  0  0 | 0 1  1  1 0
  .x .. ..    ..       |  0   2 |  *  *   * 96  *  * |  0  0  1  0  0  1  1  0 | 0 1  1  0 1
  .. .x ..    ..       |  0   2 |  *  *   *  * 96  * |  0  0  0  1  0  1  0  1 | 0 1  0  1 1
  .. .. ..    .x       |  0   2 |  *  *   *  *  * 96 |  0  0  0  0  1  0  1  1 | 0 0  1  1 1
-----------------------+--------+--------------------+-------------------------+------------
  .. x.3o.    ..       |  3   0 |  3  0   0  0  0  0 | 32  *  *  *  *  *  *  * | 1 1  0  0 0
  .. x. .. *b3x.       |  6   0 |  3  3   0  0  0  0 |  * 32  *  *  *  *  *  * | 1 0  0  1 0
((wx .. oq    ..))&#zx |  2   4 |  0  0   4  2  0  0 |  *  * 48  *  *  *  *  * | 0 1  1  0 0  {(h,H,H)2}
  .. xx ..    ..  &#x  |  2   2 |  1  0   2  0  1  0 |  *  *  * 96  *  *  *  * | 0 1  0  1 0
  .. .. ..    xx  &#x  |  2   2 |  0  1   2  0  0  1 |  *  *  *  * 96  *  *  * | 0 0  1  1 0
  .x3.x ..    ..       |  0   6 |  0  0   0  3  3  0 |  *  *  *  *  * 32  *  * | 0 1  0  0 1
  .x .. ..    .x       |  0   4 |  0  0   0  2  0  2 |  *  *  *  *  *  * 48  * | 0 0  1  0 1
  .. .x .. *b3.x       |  0   6 |  0  0   0  0  3  3 |  *  *  *  *  *  *  * 32 | 0 0  0  1 1
-----------------------+--------+--------------------+-------------------------+------------
  .. x.3o. *b3x.        12   0 | 12  6   0  0  0  0 |  4  4  0  0  0  0  0  0 | 8 *  *  * *
((wx3xx3oq    ..))&#zx  12  24 | 12  0  24 12 12  0 |  4  0  6 12  0  4  0  0 | * 8  *  * *
((wx .. oq    xx))&#zx   4   8 |  0  2   8  4  0  4 |  0  0  2  0  4  0  2  0 | * * 24  * *
  .. xx .. *b3xx  &#x    6   6 |  3  3   6  0  3  3 |  0  1  0  3  3  0  0  1 | * *  * 32 *
  .x3.x .. *b3.x         0  24 |  0  0   0 12 12 12 |  0  0  0  0  0  4  6  4 | * *  *  * 8

© 2004-2026
top of page