Acronym | nippant |
Name | penteractiprismated penteractitriacontaditeron |
Field of sections |
|
Circumradius | sqrt[35+10 sqrt(2)]/2 = 3.505073 |
Vertex figure |
|
Colonel of regiment | (is itself locally convex – no other uniform polyteral members) |
External links |
![]() |
As abstract polytope nippant is isomorphic to noquapant, thereby interchanging the roles of octagons and octagrams, resp. those of op and stop, replacing girco by quitco, resp. gidpith by gaquidpoth, histodip by hodip, and thatpath by thaquitpath.
Incidence matrix according to Dynkin symbol
x3x3x3x4/3x4*c . . . . . | 3840 | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 ---------------+------+--------------------------+-----------------------------------------+---------------------------------------+--------------- x . . . . | 2 | 1920 * * * * | 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 . x . . . | 2 | * 1920 * * * | 1 0 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . x . . | 2 | * * 1920 * * | 0 1 0 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * * 1920 * | 0 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * * 1920 | 0 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ---------------+------+--------------------------+-----------------------------------------+---------------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 0 | 640 * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 0 2 0 0 | * 960 * * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 0 2 0 | * * 960 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 0 2 | * * * 960 * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3x . . | 6 | 0 3 3 0 0 | * * * * 640 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 0 2 0 | * * * * * 960 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 0 2 | * * * * * * 960 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3x . | 6 | 0 0 3 3 0 | * * * * * * * 640 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x4*c | 8 | 0 0 4 0 4 | * * * * * * * * 480 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x4/3x | 8 | 0 0 0 4 4 | * * * * * * * * * 480 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ---------------+------+--------------------------+-----------------------------------------+---------------------------------------+--------------- x3x3x . . ♦ 24 | 12 12 12 0 0 | 4 6 0 0 4 0 0 0 0 0 | 160 * * * * * * * * * | 1 1 0 0 0 x3x . x . ♦ 12 | 6 6 0 6 0 | 2 0 3 0 0 3 0 0 0 0 | * 320 * * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 0 6 | 2 0 0 3 0 0 3 0 0 0 | * * 320 * * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 0 | 0 3 3 0 0 0 0 2 0 0 | * * * 320 * * * * * * | 1 0 0 1 0 x . x . x4*c ♦ 16 | 8 0 8 0 8 | 0 4 0 4 0 0 0 0 2 0 | * * * * 240 * * * * * | 0 1 0 1 0 x . . x4/3x ♦ 16 | 8 0 0 8 8 | 0 0 4 4 0 0 0 0 0 2 | * * * * * 240 * * * * | 0 0 1 1 0 . x3x3x . ♦ 24 | 0 12 12 12 0 | 0 0 0 0 4 6 0 4 0 0 | * * * * * * 160 * * * | 1 0 0 0 1 . x3x . x4*c ♦ 48 | 0 24 24 0 24 | 0 0 0 0 8 0 12 0 6 0 | * * * * * * * 80 * * | 0 1 0 0 1 . x . x4/3x ♦ 16 | 0 8 0 8 8 | 0 0 0 0 0 4 4 0 0 2 | * * * * * * * * 240 * | 0 0 1 0 1 . . x3x4/3x4*c ♦ 48 | 0 0 24 24 24 | 0 0 0 0 0 0 0 8 6 6 | * * * * * * * * * 80 | 0 0 0 1 1 ---------------+------+--------------------------+-----------------------------------------+---------------------------------------+--------------- x3x3x3x . ♦ 120 | 60 60 60 60 0 | 20 30 30 0 20 30 0 20 0 0 | 5 10 0 10 0 0 5 0 0 0 | 32 * * * * x3x3x . x4*c ♦ 384 | 192 192 192 0 192 | 64 96 0 96 64 0 96 0 48 0 | 16 0 32 0 24 0 0 8 0 0 | * 10 * * * x3x . x4/3x ♦ 48 | 24 24 0 24 24 | 8 0 12 12 0 12 12 0 0 6 | 0 4 4 0 0 3 0 0 3 0 | * * 80 * * x . x3x4/3x4*c ♦ 96 | 48 0 48 48 48 | 0 24 24 24 0 0 0 16 12 12 | 0 0 0 8 6 6 0 0 0 2 | * * * 40 * . x3x3x4/3x4*c ♦ 384 | 0 192 192 192 192 | 0 0 0 0 64 96 96 64 48 48 | 0 0 0 0 0 0 16 8 24 8 | * * * * 10
© 2004-2022 | top of page |