Acronym 6,n-dip Name hexagon - n-gonal duoprism Circumradius sqrt[1+1/(4 sin2(π/n))] General of army (is itself convex) Colonel of regiment (is itself locally convex) Especially thiddip (n=3)   shiddip (n=4)   phiddip (n=5)   hiddip (n=6)   hodip (n=8)   hadedip (n=10)   hitwadip (n=12) Confer general duoprisms: n,m-dip   2n,m-dip   2n,2m-dip Externallinks

Incidence matrix according to Dynkin symbol

```x6o xno   (n>2)

. . . . | 6n |  2  2 | 1  4 1 | 2 2
--------+----+-------+--------+----
x . . . |  2 | 6n  * | 1  2 0 | 2 1
. . x . |  2 |  * 6n | 0  2 1 | 1 2
--------+----+-------+--------+----
x6o . . |  6 |  6  0 | n  * * | 2 0
x . x . |  4 |  2  2 | * 6n * | 1 1
. . xno |  n |  0  n | *  * 6 | 0 2
--------+----+-------+--------+----
x6o x . ♦ 12 | 12  6 | 2  6 0 | n *
x . xno ♦ 2n |  n 2n | 0  n 2 | * 6
```

```x3x xno   (n>2)

. . . . | 6n |  1  1  2 | 1  2  2 1 | 2 1 1
--------+----+----------+-----------+------
x . . . |  2 | 3n  *  * | 1  2  0 0 | 2 1 0
. x . . |  2 |  * 3n  * | 1  0  2 0 | 2 0 1
. . x . |  2 |  *  * 6n | 0  1  1 1 | 1 1 1
--------+----+----------+-----------+------
x3x . . |  6 |  3  3  0 | n  *  * * | 2 0 0
x . x . |  4 |  2  0  2 | * 3n  * * | 1 1 0
. x x . |  4 |  0  2  2 | *  * 3n * | 1 0 1
. . xno |  n |  0  0  n | *  *  * 6 | 0 1 1
--------+----+----------+-----------+------
x3x x . ♦ 12 |  6  6  6 | 2  3  3 0 | n * *
x . xno ♦ 2n |  n  0 2n | 0  n  0 2 | * 3 *
. x xno ♦ 2n |  0  n 2n | 0  0  n 2 | * * 3
```

```x3x sns   (n>2)

. . demi( . . ) | 6n |  1  1  2 | 1  2  2 1 | 2 1 1
----------------+----+----------+-----------+------
x . demi( . . ) |  2 | 3n  *  * | 1  2  0 0 | 2 1 0
. x demi( . . ) |  2 |  * 3n  * | 1  0  2 0 | 2 0 1
. . sefa( sns ) |  2 |  *  * 6n | 0  1  1 1 | 1 1 1
----------------+----+----------+-----------+------
x3x demi( . . ) |  6 |  3  3  0 | n  *  * * | 2 0 0
x . sefa( sns ) |  4 |  2  0  2 | * 3n  * * | 1 1 0
. x sefa( sns ) |  4 |  0  2  2 | *  * 3n * | 1 0 1
. .       sns   ♦  n |  0  0  n | *  *  * 6 | 0 1 1
----------------+----+----------+-----------+------
x3x sefa( sns ) ♦ 12 |  6  6  6 | 2  3  3 0 | n * *
x .       sns   ♦ 2n |  n  0 2n | 0  n  0 2 | * 3 *
. x       sns   ♦ 2n |  0  n 2n | 0  0  n 2 | * * 3
```

```xux xxxnooo&#xt   (n>2)   → both heights = sqrt(3)/2 = 0.866025
(n-p || pseudo (x,u)-n-p || n-p)

o.. o..no..     | 2n  *  * | 1  2  1  0  0 0  0 | 2 1  2 1 0  0 0 0 | 1 1 2 0 0
.o. .o.n.o.     |  * 2n  * | 0  0  1  2  1 0  0 | 0 0  2 1 1  2 0 0 | 0 1 2 1 0
..o ..on..o     |  *  * 2n | 0  0  0  0  1 1  2 | 0 0  0 1 0  2 2 1 | 0 0 2 1 1
----------------+----------+--------------------+-------------------+----------
x.. ... ...     |  2  0  0 | n  *  *  *  * *  * | 2 0  0 1 0  0 0 0 | 1 0 2 0 0
... x.. ...     |  2  0  0 | * 2n  *  *  * *  * | 1 1  1 0 0  0 0 0 | 1 1 1 0 0
oo. oo.noo.&#x  |  1  1  0 | *  * 2n  *  * *  * | 0 0  2 1 0  0 0 0 | 0 1 2 0 0
... .x. ...     |  0  2  0 | *  *  * 2n  * *  * | 0 0  1 0 1  1 0 0 | 0 1 1 1 0
.oo .oon.oo&#x  |  0  1  1 | *  *  *  * 2n *  * | 0 0  0 1 0  2 0 0 | 0 0 2 1 0
..x ... ...     |  0  0  2 | *  *  *  *  * n  * | 0 0  0 1 0  0 2 0 | 0 0 2 0 1
... ..x ...     |  0  0  2 | *  *  *  *  * * 2n | 0 0  0 0 0  1 1 1 | 0 0 1 1 1
----------------+----------+--------------------+-------------------+----------
x.. x.. ...     |  4  0  0 | 2  2  0  0  0 0  0 | n *  * * *  * * * | 1 0 1 0 0
... x..no..     |  n  0  0 | 0  n  0  0  0 0  0 | * 2  * * *  * * * | 1 1 0 0 0
... xx. ...&#x  |  2  2  0 | 0  1  2  1  0 0  0 | * * 2n * *  * * * | 0 1 1 0 0
xux ... ...&#xt |  2  2  2 | 1  0  2  0  2 1  0 | * *  * n *  * * * | 0 0 2 0 0
... .x.n.o.     |  0  n  0 | 0  0  0  n  0 0  0 | * *  * * 2  * * * | 0 1 0 1 0
... .xx ...&#x  |  0  2  2 | 0  0  0  1  2 0  1 | * *  * * * 2n * * | 0 0 1 1 0
..x ..x ...     |  0  0  4 | 0  0  0  0  0 2  2 | * *  * * *  * n * | 0 0 1 0 1
... ..xn..o     |  0  0  n | 0  0  0  0  0 0  n | * *  * * *  * * 2 | 0 0 0 1 1
----------------+----------+--------------------+-------------------+----------
x.. x..no..     ♦ 2n  0  0 | n 2n  0  0  0 0  0 | n 2  0 0 0  0 0 0 | 1 * * * *
... xx.noo.&#x  ♦  n  n  0 | 0  n  n  n  0 0  0 | 0 1  n 0 1  0 0 0 | * 2 * * *
xux xxx ...&#xt ♦  4  4  4 | 2  2  4  2  4 2  2 | 1 0  2 2 0  2 1 0 | * * n * *
... .xxn.oo&#x  ♦  0  n  n | 0  0  0  n  n 0  n | 0 0  0 0 1  n 0 1 | * * * 2 *
..x ..xn..o     ♦  0  0 2n | 0  0  0  0  0 n 2n | 0 0  0 0 0  0 n 2 | * * * * 1
```
```or
o.. o..no..      & | 4n  * |  1  2  1  0 |  2 1  2 1 0 | 1 1 2
.o. .o.n.o.        |  * 2n |  0  0  2  2 |  0 0  4 1 1 | 0 2 2
-------------------+-------+-------------+-------------+------
x.. ... ...      & |  2  0 | 2n  *  *  * |  2 0  0 1 0 | 1 0 2
... x.. ...      & |  2  0 |  * 4n  *  * |  1 1  1 0 0 | 1 1 1
oo. oo.noo.&#x   & |  1  1 |  *  * 4n  * |  0 0  2 1 0 | 0 1 2
... .x. ...        |  0  2 |  *  *  * 2n |  0 0  2 0 1 | 0 2 1
-------------------+-------+-------------+-------------+------
x.. x.. ...      & |  4  0 |  2  2  0  0 | 2n *  * * * | 1 0 1
... x..no..      & |  n  0 |  0  n  0  0 |  * 4  * * * | 1 1 0
... xx. ...&#x   & |  2  2 |  0  1  2  1 |  * * 4n * * | 0 1 1
xux ... ...&#xt    |  4  2 |  2  0  4  0 |  * *  * n * | 0 0 2
... .x.n.o.        |  0  n |  0  0  0  n |  * *  * * 2 | 0 2 0
-------------------+-------+-------------+-------------+------
x.. x..no..      & ♦ 2n  0 |  n 2n  0  0 |  n 2  0 0 0 | 2 * *
... xx.noo.&#x   & ♦  n  n |  0  n  n  n |  0 1  n 0 1 | * 4 *
xux xxx ...&#xt    ♦  8  4 |  4  4  8  2 |  2 0  4 2 0 | * * n
```