Acronym gippittit
Name great prismated tesseractic tetracomb,
great diprismatotesseractic tetracomb,
runcicantitruncated tesseractic tetracomb
Confer
general polytopal classes:
partial Stott expansions  
External
links
wikipedia  

Incidence matrix according to Dynkin symbol

x4x3x3x4o   (N → ∞)

. . . . . | 192N |   1   1   1    2 |   1   1   2   1   2   2   1 |  1   2   2   1   2   1  1 | 2  1  1 1
----------+------+------------------+-----------------------------+---------------------------+----------
x . . . . |    2 | 96N   *   *    * |   1   1   2   0   0   0   0 |  1   2   2   1   0   0  0 | 2  1  1 0
. x . . . |    2 |   * 96N   *    * |   1   0   0   1   2   0   0 |  1   2   0   0   2   1  0 | 2  1  0 1
. . x . . |    2 |   *   * 96N    * |   0   1   0   1   0   2   0 |  1   0   2   0   2   0  1 | 2  0  1 1
. . . x . |    2 |   *   *   * 192N |   0   0   1   0   1   1   1 |  0   1   1   1   1   1  1 | 1  1  1 1
----------+------+------------------+-----------------------------+---------------------------+----------
x4x . . . |    8 |   4   4   0    0 | 24N   *   *   *   *   *   * |  1   2   0   0   0   0  0 | 2  1  0 0
x . x . . |    4 |   2   0   2    0 |   * 48N   *   *   *   *   * |  1   0   2   0   0   0  0 | 2  0  1 0
x . . x . |    4 |   2   0   0    2 |   *   * 96N   *   *   *   * |  0   1   1   1   0   0  0 | 1  1  1 0
. x3x . . |    6 |   0   3   3    0 |   *   *   * 32N   *   *   * |  1   0   0   0   2   0  0 | 2  0  0 1
. x . x . |    4 |   0   2   0    2 |   *   *   *   * 96N   *   * |  0   1   0   0   1   1  0 | 1  1  0 1
. . x3x . |    6 |   0   0   3    3 |   *   *   *   *   * 64N   * |  0   0   1   0   1   0  1 | 1  0  1 1
. . . x4o |    4 |   0   0   0    4 |   *   *   *   *   *   * 48N |  0   0   0   1   0   1  1 | 0  1  1 1
----------+------+------------------+-----------------------------+---------------------------+----------
x4x3x . .    48 |  24  24  24    0 |   6  12   0   8   0   0   0 | 4N   *   *   *   *   *  * | 2  0  0 0
x4x . x .    16 |   8   8   0    8 |   2   0   4   0   4   0   0 |  * 24N   *   *   *   *  * | 1  1  0 0
x . x3x .    12 |   6   0   6    6 |   0   3   3   0   0   2   0 |  *   * 32N   *   *   *  * | 1  0  1 0
x . . x4o     8 |   4   0   0    8 |   0   0   4   0   0   0   2 |  *   *   * 24N   *   *  * | 0  1  1 0
. x3x3x .    24 |   0  12  12   12 |   0   0   0   4   6   4   0 |  *   *   *   * 16N   *  * | 1  0  0 1
. x . x4o     8 |   0   4   0    8 |   0   0   0   0   4   0   2 |  *   *   *   *   * 24N  * | 0  1  0 1
. . x3x4o    24 |   0   0  12   24 |   0   0   0   0   0   8   6 |  *   *   *   *   *   * 8N | 0  0  1 1
----------+------+------------------+-----------------------------+---------------------------+----------
x4x3x3x .   384 | 192 192 192  192 |  48  96  96  64  96  64   0 |  8  24  32   0  16   0  0 | N  *  * *
x4x . x4o    32 |  16  16   0   32 |   4   0  16   0  16   0   8 |  0   4   0   4   0   4  0 | * 6N  * *
x . x3x4o    48 |  24   0  24   48 |   0  12  24   0   0  16  12 |  0   0   8   6   0   0  2 | *  * 4N *
. x3x3x4o   192 |   0  96  96  192 |   0   0   0  32  96  64  48 |  0   0   0   0  16  24  8 | *  *  * N

x3x3x *b3x4x   (N → ∞)

. . .    . . | 384N |    1    1    1    1    1 |   1   1   1   1   1   1   1   1   1   1 |   1   1   1   1   1   1   1   1  1   1 |  1  1 1   1 1
-------------+------+--------------------------+-----------------------------------------+----------------------------------------+--------------
x . .    . . |    2 | 192N    *    *    *    * |   1   1   1   1   0   0   0   0   0   0 |   1   1   1   1   1   1   0   0  0   0 |  1  1 1   1 0
. x .    . . |    2 |    * 192N    *    *    * |   1   0   0   0   1   1   1   0   0   0 |   1   1   1   0   0   0   1   1  1   0 |  1  1 1   0 1
. . x    . . |    2 |    *    * 192N    *    * |   0   1   0   0   1   0   0   1   1   0 |   1   0   0   1   1   0   1   1  0   1 |  1  1 0   1 1
. . .    x . |    2 |    *    *    * 192N    * |   0   0   1   0   0   1   0   1   0   1 |   0   1   0   1   0   1   1   0  1   1 |  1  0 1   1 1
. . .    . x |    2 |    *    *    *    * 192N |   0   0   0   1   0   0   1   0   1   1 |   0   0   1   0   1   1   0   1  1   1 |  0  1 1   1 1
-------------+------+--------------------------+-----------------------------------------+----------------------------------------+--------------
x3x .    . . |    6 |    3    3    0    0    0 | 64N   *   *   *   *   *   *   *   *   * |   1   1   1   0   0   0   0   0  0   0 |  1  1 1   0 0
x . x    . . |    4 |    2    0    2    0    0 |   * 96N   *   *   *   *   *   *   *   * |   1   0   0   1   1   0   0   0  0   0 |  1  1 0   1 0
x . .    x . |    4 |    2    0    0    2    0 |   *   * 96N   *   *   *   *   *   *   * |   0   1   0   1   0   1   0   0  0   0 |  1  0 1   1 0
x . .    . x |    4 |    2    0    0    0    2 |   *   *   * 96N   *   *   *   *   *   * |   0   0   1   0   1   1   0   0  0   0 |  0  1 1   1 0
. x3x    . . |    6 |    0    3    3    0    0 |   *   *   *   * 64N   *   *   *   *   * |   1   0   0   0   0   0   1   1  0   0 |  1  1 0   0 1
. x . *b3x . |    6 |    0    3    0    3    0 |   *   *   *   *   * 64N   *   *   *   * |   0   1   0   0   0   0   1   0  1   0 |  1  0 1   0 1
. x .    . x |    4 |    0    2    0    0    2 |   *   *   *   *   *   * 96N   *   *   * |   0   0   1   0   0   0   0   1  1   0 |  0  1 1   0 1
. . x    x . |    4 |    0    0    2    2    0 |   *   *   *   *   *   *   * 96N   *   * |   0   0   0   1   0   0   1   0  0   1 |  1  0 0   1 1
. . x    . x |    4 |    0    0    2    0    2 |   *   *   *   *   *   *   *   * 96N   * |   0   0   0   0   1   0   0   1  0   1 |  0  1 0   1 1
. . .    x4x |    8 |    0    0    0    4    4 |   *   *   *   *   *   *   *   *   * 48N |   0   0   0   0   0   1   0   0  1   1 |  0  0 1   1 1
-------------+------+--------------------------+-----------------------------------------+----------------------------------------+--------------
x3x3x    . .    24 |   12   12   12    0    0 |   4   6   0   0   4   0   0   0   0   0 | 16N   *   *   *   *   *   *   *  *   * |  1  1 0   0 0
x3x . *b3x .    24 |   12   12    0   12    0 |   4   0   6   0   0   4   0   0   0   0 |   * 16N   *   *   *   *   *   *  *   * |  1  0 1   0 0
x3x .    . x    12 |    6    6    0    0    6 |   2   0   0   3   0   0   3   0   0   0 |   *   * 32N   *   *   *   *   *  *   * |  0  1 1   0 0
x . x    x .     8 |    4    0    4    4    0 |   0   2   2   0   0   0   0   2   0   0 |   *   *   * 48N   *   *   *   *  *   * |  1  0 0   1 0
x . x    . x     8 |    4    0    4    0    4 |   0   2   0   2   0   0   0   0   2   0 |   *   *   *   * 48N   *   *   *  *   * |  0  1 0   1 0
x . .    x4x    16 |    8    0    0    8    8 |   0   0   4   4   0   0   0   0   0   2 |   *   *   *   *   * 24N   *   *  *   * |  0  0 1   1 0
. x3x *b3x .    24 |    0   12   12   12    0 |   0   0   0   0   4   4   0   6   0   0 |   *   *   *   *   *   * 16N   *  *   * |  1  0 0   0 1
. x3x    . x    12 |    0    6    6    0    6 |   0   0   0   0   2   0   3   0   3   0 |   *   *   *   *   *   *   * 32N  *   * |  0  1 0   0 1
. x . *b3x4x    48 |    0   24    0   24   24 |   0   0   0   0   0   8  12   0   0   6 |   *   *   *   *   *   *   *   * 8N   * |  0  0 1   0 1
. . x    x4x    16 |    0    0    8    8    8 |   0   0   0   0   0   0   0   4   4   2 |   *   *   *   *   *   *   *   *  * 24N |  0  0 0   1 1
-------------+------+--------------------------+-----------------------------------------+----------------------------------------+--------------
x3x3x *b3x .   192 |   96   96   96   96    0 |  32  48  48   0  32  32   0  48   0   0 |   8   8   0  24   0   0   8   0  0   0 | 2N  * *   * *
x3x3x    . x    48 |   24   24   24    0   24 |   8  12   0  12   8   0  12   0  12   0 |   2   0   4   0   6   0   0   4  0   0 |  * 8N *   * *
x3x . *b3x4x   384 |  192  192    0  192  192 |  64   0  96  96   0  64  96   0   0  48 |   0  16  32   0   0  24   0   0  8   0 |  *  * N   * *
x . x    x4x    32 |   16    0   16   16   16 |   0   8   8   8   0   0   0   8   8   4 |   0   0   0   4   4   2   0   0  0   2 |  *  * * 12N *
. x3x *b3x4x   384 |    0  192  192  192  192 |   0   0   0   0  64  64  96  96  96  48 |   0   0   0   0   0   0  16  32  8  24 |  *  * *   * N

© 2004-2019
top of page