Acronym | gippittit |
Name |
great prismated tesseractic tetracomb, great diprismatotesseractic tetracomb, runcicantitruncated tesseractic tetracomb |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x4x3x3x4o (N → ∞) . . . . . | 192N | 1 1 1 2 | 1 1 2 1 2 2 1 | 1 2 2 1 2 1 1 | 2 1 1 1 ----------+------+------------------+-----------------------------+---------------------------+---------- x . . . . | 2 | 96N * * * | 1 1 2 0 0 0 0 | 1 2 2 1 0 0 0 | 2 1 1 0 . x . . . | 2 | * 96N * * | 1 0 0 1 2 0 0 | 1 2 0 0 2 1 0 | 2 1 0 1 . . x . . | 2 | * * 96N * | 0 1 0 1 0 2 0 | 1 0 2 0 2 0 1 | 2 0 1 1 . . . x . | 2 | * * * 192N | 0 0 1 0 1 1 1 | 0 1 1 1 1 1 1 | 1 1 1 1 ----------+------+------------------+-----------------------------+---------------------------+---------- x4x . . . | 8 | 4 4 0 0 | 24N * * * * * * | 1 2 0 0 0 0 0 | 2 1 0 0 x . x . . | 4 | 2 0 2 0 | * 48N * * * * * | 1 0 2 0 0 0 0 | 2 0 1 0 x . . x . | 4 | 2 0 0 2 | * * 96N * * * * | 0 1 1 1 0 0 0 | 1 1 1 0 . x3x . . | 6 | 0 3 3 0 | * * * 32N * * * | 1 0 0 0 2 0 0 | 2 0 0 1 . x . x . | 4 | 0 2 0 2 | * * * * 96N * * | 0 1 0 0 1 1 0 | 1 1 0 1 . . x3x . | 6 | 0 0 3 3 | * * * * * 64N * | 0 0 1 0 1 0 1 | 1 0 1 1 . . . x4o | 4 | 0 0 0 4 | * * * * * * 48N | 0 0 0 1 0 1 1 | 0 1 1 1 ----------+------+------------------+-----------------------------+---------------------------+---------- x4x3x . . ♦ 48 | 24 24 24 0 | 6 12 0 8 0 0 0 | 4N * * * * * * | 2 0 0 0 x4x . x . ♦ 16 | 8 8 0 8 | 2 0 4 0 4 0 0 | * 24N * * * * * | 1 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 | 0 3 3 0 0 2 0 | * * 32N * * * * | 1 0 1 0 x . . x4o ♦ 8 | 4 0 0 8 | 0 0 4 0 0 0 2 | * * * 24N * * * | 0 1 1 0 . x3x3x . ♦ 24 | 0 12 12 12 | 0 0 0 4 6 4 0 | * * * * 16N * * | 1 0 0 1 . x . x4o ♦ 8 | 0 4 0 8 | 0 0 0 0 4 0 2 | * * * * * 24N * | 0 1 0 1 . . x3x4o ♦ 24 | 0 0 12 24 | 0 0 0 0 0 8 6 | * * * * * * 8N | 0 0 1 1 ----------+------+------------------+-----------------------------+---------------------------+---------- x4x3x3x . ♦ 384 | 192 192 192 192 | 48 96 96 64 96 64 0 | 8 24 32 0 16 0 0 | N * * * x4x . x4o ♦ 32 | 16 16 0 32 | 4 0 16 0 16 0 8 | 0 4 0 4 0 4 0 | * 6N * * x . x3x4o ♦ 48 | 24 0 24 48 | 0 12 24 0 0 16 12 | 0 0 8 6 0 0 2 | * * 4N * . x3x3x4o ♦ 192 | 0 96 96 192 | 0 0 0 32 96 64 48 | 0 0 0 0 16 24 8 | * * * N
x3x3x *b3x4x (N → ∞) . . . . . | 384N | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 -------------+------+--------------------------+-----------------------------------------+----------------------------------------+-------------- x . . . . | 2 | 192N * * * * | 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 . x . . . | 2 | * 192N * * * | 1 0 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . x . . | 2 | * * 192N * * | 0 1 0 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * * 192N * | 0 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * * 192N | 0 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 -------------+------+--------------------------+-----------------------------------------+----------------------------------------+-------------- x3x . . . | 6 | 3 3 0 0 0 | 64N * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 0 2 0 0 | * 96N * * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 0 2 0 | * * 96N * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 0 2 | * * * 96N * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3x . . | 6 | 0 3 3 0 0 | * * * * 64N * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . *b3x . | 6 | 0 3 0 3 0 | * * * * * 64N * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 0 2 | * * * * * * 96N * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x x . | 4 | 0 0 2 2 0 | * * * * * * * 96N * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x | 4 | 0 0 2 0 2 | * * * * * * * * 96N * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x4x | 8 | 0 0 0 4 4 | * * * * * * * * * 48N | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 -------------+------+--------------------------+-----------------------------------------+----------------------------------------+-------------- x3x3x . . ♦ 24 | 12 12 12 0 0 | 4 6 0 0 4 0 0 0 0 0 | 16N * * * * * * * * * | 1 1 0 0 0 x3x . *b3x . ♦ 24 | 12 12 0 12 0 | 4 0 6 0 0 4 0 0 0 0 | * 16N * * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 0 6 | 2 0 0 3 0 0 3 0 0 0 | * * 32N * * * * * * * | 0 1 1 0 0 x . x x . ♦ 8 | 4 0 4 4 0 | 0 2 2 0 0 0 0 2 0 0 | * * * 48N * * * * * * | 1 0 0 1 0 x . x . x ♦ 8 | 4 0 4 0 4 | 0 2 0 2 0 0 0 0 2 0 | * * * * 48N * * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 0 0 8 8 | 0 0 4 4 0 0 0 0 0 2 | * * * * * 24N * * * * | 0 0 1 1 0 . x3x *b3x . ♦ 24 | 0 12 12 12 0 | 0 0 0 0 4 4 0 6 0 0 | * * * * * * 16N * * * | 1 0 0 0 1 . x3x . x ♦ 12 | 0 6 6 0 6 | 0 0 0 0 2 0 3 0 3 0 | * * * * * * * 32N * * | 0 1 0 0 1 . x . *b3x4x ♦ 48 | 0 24 0 24 24 | 0 0 0 0 0 8 12 0 0 6 | * * * * * * * * 8N * | 0 0 1 0 1 . . x x4x ♦ 16 | 0 0 8 8 8 | 0 0 0 0 0 0 0 4 4 2 | * * * * * * * * * 24N | 0 0 0 1 1 -------------+------+--------------------------+-----------------------------------------+----------------------------------------+-------------- x3x3x *b3x . ♦ 192 | 96 96 96 96 0 | 32 48 48 0 32 32 0 48 0 0 | 8 8 0 24 0 0 8 0 0 0 | 2N * * * * x3x3x . x ♦ 48 | 24 24 24 0 24 | 8 12 0 12 8 0 12 0 12 0 | 2 0 4 0 6 0 0 4 0 0 | * 8N * * * x3x . *b3x4x ♦ 384 | 192 192 0 192 192 | 64 0 96 96 0 64 96 0 0 48 | 0 16 32 0 0 24 0 0 8 0 | * * N * * x . x x4x ♦ 32 | 16 0 16 16 16 | 0 8 8 8 0 0 0 8 8 4 | 0 0 0 4 4 2 0 0 0 2 | * * * 12N * . x3x *b3x4x ♦ 384 | 0 192 192 192 192 | 0 0 0 0 64 64 96 96 96 48 | 0 0 0 0 0 0 16 32 8 24 | * * * * N
© 2004-2024 | top of page |