Acronym gart Name great rhombated triacontiditeron,cantitruncated pentacross Field of sections ` ©` Circumradius sqrt(7) = 2.645751 Vertex figure ` ©   ©` Coordinates (3/sqrt(2), sqrt(2), 1/sqrt(2), 0, 0)   & all permutations, all changes of sign Confer general polytopal classes: lace simplices   partial Stott expansions Externallinks

Incidence matrix according to Dynkin symbol

```x3x3x3o4o

. . . . . | 480 |   1   1   4 |  1   4   4   4 |  4   4   4  1 |  4  1  1
----------+-----+-------------+----------------+---------------+---------
x . . . . |   2 | 240   *   * |  1   4   0   0 |  4   4   0  0 |  4  1  0
. x . . . |   2 |   * 240   * |  1   0   4   0 |  4   0   4  0 |  4  0  1
. . x . . |   2 |   *   * 960 |  0   1   1   2 |  1   2   2  1 |  2  1  1
----------+-----+-------------+----------------+---------------+---------
x3x . . . |   6 |   3   3   0 | 80   *   *   * |  4   0   0  0 |  4  0  0
x . x . . |   4 |   2   0   2 |  * 480   *   * |  1   2   0  0 |  2  1  0
. x3x . . |   6 |   0   3   3 |  *   * 320   * |  1   0   2  0 |  2  0  1
. . x3o . |   3 |   0   0   3 |  *   *   * 640 |  0   1   1  1 |  1  1  1
----------+-----+-------------+----------------+---------------+---------
x3x3x . . ♦  24 |  12  12  12 |  4   6   4   0 | 80   *   *  * |  2  0  0
x . x3o . ♦   6 |   3   0   6 |  0   3   0   2 |  * 320   *  * |  1  1  0
. x3x3o . ♦  12 |   0   6  12 |  0   0   4   4 |  *   * 160  * |  1  0  1
. . x3o4o ♦   6 |   0   0  12 |  0   0   0   8 |  *   *   * 80 |  0  1  1
----------+-----+-------------+----------------+---------------+---------
x3x3x3o . ♦  60 |  30  30  60 | 10  30  20  20 |  5  10   5  0 | 32  *  *
x . x3o4o ♦  12 |   6   0  24 |  0  12   0  16 |  0   8   0  2 |  * 40  *
. x3x3o4o ♦  48 |   0  24  96 |  0   0  32  64 |  0   0  16  8 |  *  * 10
```

```x3x3x3o4/3o

. . . .   . | 480 |   1   1   4 |  1   4   4   4 |  4   4   4  1 |  4  1  1
------------+-----+-------------+----------------+---------------+---------
x . . .   . |   2 | 240   *   * |  1   4   0   0 |  4   4   0  0 |  4  1  0
. x . .   . |   2 |   * 240   * |  1   0   4   0 |  4   0   4  0 |  4  0  1
. . x .   . |   2 |   *   * 960 |  0   1   1   2 |  1   2   2  1 |  2  1  1
------------+-----+-------------+----------------+---------------+---------
x3x . .   . |   6 |   3   3   0 | 80   *   *   * |  4   0   0  0 |  4  0  0
x . x .   . |   4 |   2   0   2 |  * 480   *   * |  1   2   0  0 |  2  1  0
. x3x .   . |   6 |   0   3   3 |  *   * 320   * |  1   0   2  0 |  2  0  1
. . x3o   . |   3 |   0   0   3 |  *   *   * 640 |  0   1   1  1 |  1  1  1
------------+-----+-------------+----------------+---------------+---------
x3x3x .   . ♦  24 |  12  12  12 |  4   6   4   0 | 80   *   *  * |  2  0  0
x . x3o   . ♦   6 |   3   0   6 |  0   3   0   2 |  * 320   *  * |  1  1  0
. x3x3o   . ♦  12 |   0   6  12 |  0   0   4   4 |  *   * 160  * |  1  0  1
. . x3o4/3o ♦   6 |   0   0  12 |  0   0   0   8 |  *   *   * 80 |  0  1  1
------------+-----+-------------+----------------+---------------+---------
x3x3x3o   . ♦  60 |  30  30  60 | 10  30  20  20 |  5  10   5  0 | 32  *  *
x . x3o4/3o ♦  12 |   6   0  24 |  0  12   0  16 |  0   8   0  2 |  * 40  *
. x3x3o4/3o ♦  48 |   0  24  96 |  0   0  32  64 |  0   0  16  8 |  *  * 10
```

```o3x3o *b3x3x

. . .    . . | 480 |   4   1   1 |   2   2   4   4  1 |  1  2   2  2   2  4 |  1  1  2  2
-------------+-----+-------------+--------------------+---------------------+------------
. x .    . . |   2 | 960   *   * |   1   1   1   1  0 |  1  1   1  1   1  1 |  1  1  1  1
. . .    x . |   2 |   * 240   * |   0   0   4   0  1 |  0  2   0  2   0  4 |  1  0  2  2
. . .    . x |   2 |   *   * 240 |   0   0   0   4  1 |  0  0   2  0   2  4 |  0  1  2  2
-------------+-----+-------------+--------------------+---------------------+------------
o3x .    . . |   3 |   3   0   0 | 320   *   *   *  * |  1  1   1  0   0  0 |  1  1  1  0
. x3o    . . |   3 |   3   0   0 |   * 320   *   *  * |  1  0   0  1   1  0 |  1  1  0  1
. x . *b3x . |   6 |   3   3   0 |   *   * 320   *  * |  0  1   0  1   0  1 |  1  0  1  1
. x .    . x |   4 |   2   0   2 |   *   *   * 480  * |  0  0   1  0   1  1 |  0  1  1  1
. . .    x3x |   6 |   0   3   3 |   *   *   *   * 80 |  0  0   0  0   0  4 |  0  0  2  2
-------------+-----+-------------+--------------------+---------------------+------------
o3x3o    . . ♦   6 |  12   0   0 |   4   4   0   0  0 | 80  *   *  *   *  * |  1  1  0  0
o3x . *b3x . ♦  12 |  12   6   0 |   4   0   4   0  0 |  * 80   *  *   *  * |  1  0  1  0
o3x .    . x ♦   6 |   6   0   3 |   2   0   0   3  0 |  *  * 160  *   *  * |  0  1  1  0
. x3o *b3x . ♦  12 |  12   6   0 |   0   4   4   0  0 |  *  *   * 80   *  * |  1  0  0  1
. x3o    . x ♦   6 |   6   0   3 |   0   2   0   3  0 |  *  *   *  * 160  * |  0  1  0  1
. x . *b3x3x ♦  24 |  12  12  12 |   0   0   4   6  4 |  *  *   *  *   * 80 |  0  0  1  1
-------------+-----+-------------+--------------------+---------------------+------------
o3x3o *b3x . ♦  48 |  96  24   0 |  32  32  32   0  0 |  8  8   0  8   0  0 | 10  *  *  *
o3x3o    . x ♦  12 |  24   0   6 |   8   8   0  12  0 |  2  0   4  0   4  0 |  * 40  *  *
o3x . *b3x3x ♦  60 |  60  30  30 |  20   0  20  30 10 |  0  5  10  0   0  5 |  *  * 16  *
. x3o *b3x3x ♦  60 |  60  30  30 |   0  20  20  30 10 |  0  0   0  5  10  5 |  *  *  * 16
```