Acronym gaquapan
Name great quasiprismated penteract
Field of sections
 ©
Circumradius sqrt[51-18 sqrt(2)]/2 = 2.527061
Vertex figure
 ©
Coordinates ((3 sqrt(2)-1)/2, (3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
External
links
hedrondude  

As abstract polyteron gaquapan is isomorph to gippin, thereby replacing octagrams by octagons, resp. quitco by girco and stop by op, resp. gaquidpoth by gidpith and tistodip by todip.


Incidence matrix according to Dynkin symbol

o3x3x3x4/3x

. . . .   . | 1920 |    2   1   1   1 |   1   2   2   2   1   1   1 |   1   1   1   2   2   2  1 |  1  1  1  2
------------+------+------------------+-----------------------------+----------------------------+------------
. x . .   . |    2 | 1920   *   *   * |   1   1   1   1   0   0   0 |   1   1   1   1   1   1  0 |  1  1  1  1
. . x .   . |    2 |    * 960   *   * |   0   2   0   0   1   1   0 |   1   0   0   2   2   0  1 |  1  1  0  2
. . . x   . |    2 |    *   * 960   * |   0   0   2   0   1   0   1 |   0   1   0   2   0   2  1 |  1  0  1  2
. . . .   x |    2 |    *   *   * 960 |   0   0   0   2   0   1   1 |   0   0   1   0   2   2  1 |  0  1  1  2
------------+------+------------------+-----------------------------+----------------------------+------------
o3x . .   . |    3 |    3   0   0   0 | 640   *   *   *   *   *   * |   1   1   1   0   0   0  0 |  1  1  1  0
. x3x .   . |    6 |    3   3   0   0 |   * 640   *   *   *   *   * |   1   0   0   1   1   0  0 |  1  1  0  1
. x . x   . |    4 |    2   0   2   0 |   *   * 960   *   *   *   * |   0   1   0   1   0   1  0 |  1  0  1  1
. x . .   x |    4 |    2   0   0   2 |   *   *   * 960   *   *   * |   0   0   1   0   1   1  0 |  0  1  1  1
. . x3x   . |    6 |    0   3   3   0 |   *   *   *   * 320   *   * |   0   0   0   2   0   0  1 |  1  0  0  2
. . x .   x |    4 |    0   2   0   2 |   *   *   *   *   * 480   * |   0   0   0   0   2   0  1 |  0  1  0  2
. . . x4/3x |    8 |    0   0   4   4 |   *   *   *   *   *   * 240 |   0   0   0   0   0   2  1 |  0  0  1  2
------------+------+------------------+-----------------------------+----------------------------+------------
o3x3x .   .    12 |   12   6   0   0 |   4   4   0   0   0   0   0 | 160   *   *   *   *   *  * |  1  1  0  0
o3x . x   .     6 |    6   0   3   0 |   2   0   3   0   0   0   0 |   * 320   *   *   *   *  * |  1  0  1  0
o3x . .   x     6 |    6   0   0   3 |   2   0   0   3   0   0   0 |   *   * 320   *   *   *  * |  0  1  1  0
. x3x3x   .    24 |   12  12  12   0 |   0   4   6   0   4   0   0 |   *   *   * 160   *   *  * |  1  0  0  1
. x3x .   x    12 |    6   6   0   6 |   0   2   0   3   0   3   0 |   *   *   *   * 320   *  * |  0  1  0  1
. x . x4/3x    16 |    8   0   8   8 |   0   0   4   4   0   0   2 |   *   *   *   *   * 240  * |  0  0  1  1
. . x3x4/3x    48 |    0  24  24  24 |   0   0   0   0   8  12   6 |   *   *   *   *   *   * 40 |  0  0  0  2
------------+------+------------------+-----------------------------+----------------------------+------------
o3x3x3x   .    60 |   60  30  30   0 |  20  20  30   0  10   0   0 |   5  10   0   5   0   0  0 | 32  *  *  *
o3x3x .   x    24 |   24  12   0  12 |   8   8   0  12   0   6   0 |   2   0   4   0   4   0  0 |  * 80  *  *
o3x . x4/3x    24 |   24   0  12  12 |   8   0  12  12   0   0   3 |   0   4   4   0   0   3  0 |  *  * 80  *
. x3x3x4/3x   384 |  192 192 192 192 |   0  64  96  96  64  96  48 |   0   0   0  16  32  24  8 |  *  *  * 10

© 2004-2019
top of page