Acronym gaquapan Name great quasiprismated penteract Field of sections ` ©` Circumradius sqrt[51-18 sqrt(2)]/2 = 2.527061 Vertex figure ` ©` Coordinates ((3 sqrt(2)-1)/2, (3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign Externallinks

As abstract polyteron gaquapan is isomorph to gippin, thereby replacing octagrams by octagons, resp. quitco by girco and stop by op, resp. gaquidpoth by gidpith and tistodip by todip.

Incidence matrix according to Dynkin symbol

```o3x3x3x4/3x

. . . .   . | 1920 |    2   1   1   1 |   1   2   2   2   1   1   1 |   1   1   1   2   2   2  1 |  1  1  1  2
------------+------+------------------+-----------------------------+----------------------------+------------
. x . .   . |    2 | 1920   *   *   * |   1   1   1   1   0   0   0 |   1   1   1   1   1   1  0 |  1  1  1  1
. . x .   . |    2 |    * 960   *   * |   0   2   0   0   1   1   0 |   1   0   0   2   2   0  1 |  1  1  0  2
. . . x   . |    2 |    *   * 960   * |   0   0   2   0   1   0   1 |   0   1   0   2   0   2  1 |  1  0  1  2
. . . .   x |    2 |    *   *   * 960 |   0   0   0   2   0   1   1 |   0   0   1   0   2   2  1 |  0  1  1  2
------------+------+------------------+-----------------------------+----------------------------+------------
o3x . .   . |    3 |    3   0   0   0 | 640   *   *   *   *   *   * |   1   1   1   0   0   0  0 |  1  1  1  0
. x3x .   . |    6 |    3   3   0   0 |   * 640   *   *   *   *   * |   1   0   0   1   1   0  0 |  1  1  0  1
. x . x   . |    4 |    2   0   2   0 |   *   * 960   *   *   *   * |   0   1   0   1   0   1  0 |  1  0  1  1
. x . .   x |    4 |    2   0   0   2 |   *   *   * 960   *   *   * |   0   0   1   0   1   1  0 |  0  1  1  1
. . x3x   . |    6 |    0   3   3   0 |   *   *   *   * 320   *   * |   0   0   0   2   0   0  1 |  1  0  0  2
. . x .   x |    4 |    0   2   0   2 |   *   *   *   *   * 480   * |   0   0   0   0   2   0  1 |  0  1  0  2
. . . x4/3x |    8 |    0   0   4   4 |   *   *   *   *   *   * 240 |   0   0   0   0   0   2  1 |  0  0  1  2
------------+------+------------------+-----------------------------+----------------------------+------------
o3x3x .   . ♦   12 |   12   6   0   0 |   4   4   0   0   0   0   0 | 160   *   *   *   *   *  * |  1  1  0  0
o3x . x   . ♦    6 |    6   0   3   0 |   2   0   3   0   0   0   0 |   * 320   *   *   *   *  * |  1  0  1  0
o3x . .   x ♦    6 |    6   0   0   3 |   2   0   0   3   0   0   0 |   *   * 320   *   *   *  * |  0  1  1  0
. x3x3x   . ♦   24 |   12  12  12   0 |   0   4   6   0   4   0   0 |   *   *   * 160   *   *  * |  1  0  0  1
. x3x .   x ♦   12 |    6   6   0   6 |   0   2   0   3   0   3   0 |   *   *   *   * 320   *  * |  0  1  0  1
. x . x4/3x ♦   16 |    8   0   8   8 |   0   0   4   4   0   0   2 |   *   *   *   *   * 240  * |  0  0  1  1
. . x3x4/3x ♦   48 |    0  24  24  24 |   0   0   0   0   8  12   6 |   *   *   *   *   *   * 40 |  0  0  0  2
------------+------+------------------+-----------------------------+----------------------------+------------
o3x3x3x   . ♦   60 |   60  30  30   0 |  20  20  30   0  10   0   0 |   5  10   0   5   0   0  0 | 32  *  *  *
o3x3x .   x ♦   24 |   24  12   0  12 |   8   8   0  12   0   6   0 |   2   0   4   0   4   0  0 |  * 80  *  *
o3x . x4/3x ♦   24 |   24   0  12  12 |   8   0  12  12   0   0   3 |   0   4   4   0   0   3  0 |  *  * 80  *
. x3x3x4/3x ♦  384 |  192 192 192 192 |   0  64  96  96  64  96  48 |   0   0   0  16  32  24  8 |  *  *  * 10
```