Acronym | gaquapan |
Name | great quasiprismated penteract |
Field of sections |
© |
Circumradius | sqrt[51-18 sqrt(2)]/2 = 2.527061 |
Vertex figure |
© |
Coordinates | ((3 sqrt(2)-1)/2, (3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign |
Face vector | 1920, 4800, 4240, 1530, 202 |
Confer |
|
External links |
As abstract polyteron gaquapan is isomorph to gippin, thereby replacing octagrams by octagons, resp. quitco by girco and stop by op, resp. gaquidpoth by gidpith and tistodip by todip.
Incidence matrix according to Dynkin symbol
o3x3x3x4/3x . . . . . | 1920 | 2 1 1 1 | 1 2 2 2 1 1 1 | 1 1 1 2 2 2 1 | 1 1 1 2 ------------+------+------------------+-----------------------------+----------------------------+------------ . x . . . | 2 | 1920 * * * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . x . . | 2 | * 960 * * | 0 2 0 0 1 1 0 | 1 0 0 2 2 0 1 | 1 1 0 2 . . . x . | 2 | * * 960 * | 0 0 2 0 1 0 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * * 960 | 0 0 0 2 0 1 1 | 0 0 1 0 2 2 1 | 0 1 1 2 ------------+------+------------------+-----------------------------+----------------------------+------------ o3x . . . | 3 | 3 0 0 0 | 640 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 . x3x . . | 6 | 3 3 0 0 | * 640 * * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 . x . x . | 4 | 2 0 2 0 | * * 960 * * * * | 0 1 0 1 0 1 0 | 1 0 1 1 . x . . x | 4 | 2 0 0 2 | * * * 960 * * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . x3x . | 6 | 0 3 3 0 | * * * * 320 * * | 0 0 0 2 0 0 1 | 1 0 0 2 . . x . x | 4 | 0 2 0 2 | * * * * * 480 * | 0 0 0 0 2 0 1 | 0 1 0 2 . . . x4/3x | 8 | 0 0 4 4 | * * * * * * 240 | 0 0 0 0 0 2 1 | 0 0 1 2 ------------+------+------------------+-----------------------------+----------------------------+------------ o3x3x . . ♦ 12 | 12 6 0 0 | 4 4 0 0 0 0 0 | 160 * * * * * * | 1 1 0 0 o3x . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 | * 320 * * * * * | 1 0 1 0 o3x . . x ♦ 6 | 6 0 0 3 | 2 0 0 3 0 0 0 | * * 320 * * * * | 0 1 1 0 . x3x3x . ♦ 24 | 12 12 12 0 | 0 4 6 0 4 0 0 | * * * 160 * * * | 1 0 0 1 . x3x . x ♦ 12 | 6 6 0 6 | 0 2 0 3 0 3 0 | * * * * 320 * * | 0 1 0 1 . x . x4/3x ♦ 16 | 8 0 8 8 | 0 0 4 4 0 0 2 | * * * * * 240 * | 0 0 1 1 . . x3x4/3x ♦ 48 | 0 24 24 24 | 0 0 0 0 8 12 6 | * * * * * * 40 | 0 0 0 2 ------------+------+------------------+-----------------------------+----------------------------+------------ o3x3x3x . ♦ 60 | 60 30 30 0 | 20 20 30 0 10 0 0 | 5 10 0 5 0 0 0 | 32 * * * o3x3x . x ♦ 24 | 24 12 0 12 | 8 8 0 12 0 6 0 | 2 0 4 0 4 0 0 | * 80 * * o3x . x4/3x ♦ 24 | 24 0 12 12 | 8 0 12 12 0 0 3 | 0 4 4 0 0 3 0 | * * 80 * . x3x3x4/3x ♦ 384 | 192 192 192 192 | 0 64 96 96 64 96 48 | 0 0 0 16 32 24 8 | * * * 10
© 2004-2025 | top of page |