Acronym ..., doe || ipe Name (degenerate) doe atop ipe Circumradius ∞   i.e. flat in euclidean space Confer general polytopal classes: decomposition

It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.

Incidence matrix according to Dynkin symbol

```ox ox3oo5xo&#x   → height = 0
(doe || ipe)

o. o.3o.5o.    | 20  * |  3   6  0  0 |  3  3   6  12  0  0 | 1  3  6  2  6  6  0 0 |  1  3  6 2 0
.o .o3.o5.o    |  * 24 |  0   5  1  5 |  0  5  10   5  5  5 | 0 10  5  5  5  1  5 1 |  5  5  1 1 1
---------------+-------+--------------+---------------------+-----------------------+-------------
.. .. .. x.    |  2  0 | 30   *  *  * |  2  0   0   4  0  0 | 1  0  2  0  2  4  0 0 |  0  1  2 2 0
oo oo3oo5oo&#x |  1  1 |  * 120  *  * |  0  1   2   2  0  0 | 0  2  2  1  2  1  0 0 |  1  2  1 1 0
.x .. .. ..    |  0  2 |  *   * 12  * |  0  5   0   0  5  0 | 0 10  5  0  0  0  5 0 |  5  5  1 0 1
.. .x .. ..    |  0  2 |  *   *  * 60 |  0  0   2   0  1  2 | 0  2  0  2  1  0  2 1 |  2  1  0 1 1
---------------+-------+--------------+---------------------+-----------------------+-------------
.. .. o.5x.    |  5  0 |  5   0  0  0 | 12  *   *   *  *  * | 1  0  0  0  0  2  0 0 |  0  0  1 2 0
ox .. .. ..&#x |  1  2 |  0   2  1  0 |  * 60   *   *  *  * | 0  2  2  0  0  0  0 0 |  1  2  1 0 0
.. ox .. ..&#x |  1  2 |  0   2  0  1 |  *  * 120   *  *  * | 0  1  0  1  1  0  0 0 |  1  1  0 1 0
.. .. .. xo&#x |  2  1 |  1   2  0  0 |  *  *   * 120  *  * | 0  0  1  0  1  1  0 0 |  0  1  1 1 0
.x .x .. ..    |  0  4 |  0   0  2  2 |  *  *   *   * 30  * | 0  2  0  0  0  0  2 0 |  2  1  0 0 1
.. .x3.o ..    |  0  3 |  0   0  0  3 |  *  *   *   *  * 40 | 0  0  0  1  0  0  1 1 |  1  0  0 1 1
---------------+-------+--------------+---------------------+-----------------------+-------------
.. o.3o.5x.    ♦ 20  0 | 30   0  0  0 | 12  0   0   0  0  0 | 1  *  *  *  *  *  * * |  0  0  0 2 0
ox ox .. ..&#x ♦  1  4 |  0   4  2  2 |  0  2   2   0  1  0 | * 60  *  *  *  *  * * |  1  1  0 0 0
ox .. .. xo&#x ♦  2  2 |  1   4  1  0 |  0  2   0   2  0  0 | *  * 60  *  *  *  * * |  0  1  1 0 0
.. ox3oo ..&#x ♦  1  3 |  0   3  0  3 |  0  0   3   0  0  1 | *  *  * 40  *  *  * * |  1  0  0 1 0
.. ox .. xo&#x ♦  2  2 |  1   4  0  1 |  0  0   2   2  0  0 | *  *  *  * 60  *  * * |  0  1  0 1 0
.. .. oo5xo&#x ♦  5  1 |  5   5  0  0 |  1  0   0   5  0  0 | *  *  *  *  * 24  * * |  0  0  1 1 0
.x .x3.o ..    ♦  0  6 |  0   0  3  6 |  0  0   0   0  3  2 | *  *  *  *  *  * 20 * |  1  0  0 0 1
.. .x3.o5.o    ♦  0 12 |  0   0  0 30 |  0  0   0   0  0 20 | *  *  *  *  *  *  * 2 |  0  0  0 1 1
---------------+-------+--------------+---------------------+-----------------------+-------------
ox ox3oo ..&#x ♦  1  6 |  0   6  3  6 |  0  3   6   0  3  2 | 0  3  0  2  0  0  1 0 | 20  *  * * *
ox ox .. xo&#x ♦  2  4 |  1   8  2  2 |  0  4   4   4  1  0 | 0  2  2  0  2  0  0 0 |  * 30  * * *
ox .. oo5xo&#x ♦  5  2 |  5  10  1  0 |  1  5   0  10  0  0 | 0  0  5  0  0  2  0 0 |  *  * 12 * *
.. ox3oo5xo&#x ♦ 20 12 | 30  60  0 30 | 12  0  60  60  0 20 | 1  0  0 20 30 12  0 1 |  *  *  * 2 *
.x .x3.o5.o    ♦  0 24 |  0   0 12 60 |  0  0   0   0 30 40 | 0  0  0  0  0  0 20 2 |  *  *  * * 1
```