Acronym | ..., doe || ipe |
Name | (degenerate) doe atop ipe |
Circumradius | ∞ i.e. flat in euclidean space |
Face vector | 44, 222, 382, 267, 65 |
Confer |
|
It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.
Incidence matrix according to Dynkin symbol
ox ox3oo5xo&#x → height = 0
(doe || ipe)
o. o.3o.5o. | 20 * | 3 6 0 0 | 3 3 6 12 0 0 | 1 3 6 2 6 6 0 0 | 1 3 6 2 0
.o .o3.o5.o | * 24 | 0 5 1 5 | 0 5 10 5 5 5 | 0 10 5 5 5 1 5 1 | 5 5 1 1 1
---------------+-------+--------------+---------------------+-----------------------+-------------
.. .. .. x. | 2 0 | 30 * * * | 2 0 0 4 0 0 | 1 0 2 0 2 4 0 0 | 0 1 2 2 0
oo oo3oo5oo&#x | 1 1 | * 120 * * | 0 1 2 2 0 0 | 0 2 2 1 2 1 0 0 | 1 2 1 1 0
.x .. .. .. | 0 2 | * * 12 * | 0 5 0 0 5 0 | 0 10 5 0 0 0 5 0 | 5 5 1 0 1
.. .x .. .. | 0 2 | * * * 60 | 0 0 2 0 1 2 | 0 2 0 2 1 0 2 1 | 2 1 0 1 1
---------------+-------+--------------+---------------------+-----------------------+-------------
.. .. o.5x. | 5 0 | 5 0 0 0 | 12 * * * * * | 1 0 0 0 0 2 0 0 | 0 0 1 2 0
ox .. .. ..&#x | 1 2 | 0 2 1 0 | * 60 * * * * | 0 2 2 0 0 0 0 0 | 1 2 1 0 0
.. ox .. ..&#x | 1 2 | 0 2 0 1 | * * 120 * * * | 0 1 0 1 1 0 0 0 | 1 1 0 1 0
.. .. .. xo&#x | 2 1 | 1 2 0 0 | * * * 120 * * | 0 0 1 0 1 1 0 0 | 0 1 1 1 0
.x .x .. .. | 0 4 | 0 0 2 2 | * * * * 30 * | 0 2 0 0 0 0 2 0 | 2 1 0 0 1
.. .x3.o .. | 0 3 | 0 0 0 3 | * * * * * 40 | 0 0 0 1 0 0 1 1 | 1 0 0 1 1
---------------+-------+--------------+---------------------+-----------------------+-------------
.. o.3o.5x. ♦ 20 0 | 30 0 0 0 | 12 0 0 0 0 0 | 1 * * * * * * * | 0 0 0 2 0
ox ox .. ..&#x ♦ 1 4 | 0 4 2 2 | 0 2 2 0 1 0 | * 60 * * * * * * | 1 1 0 0 0
ox .. .. xo&#x ♦ 2 2 | 1 4 1 0 | 0 2 0 2 0 0 | * * 60 * * * * * | 0 1 1 0 0
.. ox3oo ..&#x ♦ 1 3 | 0 3 0 3 | 0 0 3 0 0 1 | * * * 40 * * * * | 1 0 0 1 0
.. ox .. xo&#x ♦ 2 2 | 1 4 0 1 | 0 0 2 2 0 0 | * * * * 60 * * * | 0 1 0 1 0
.. .. oo5xo&#x ♦ 5 1 | 5 5 0 0 | 1 0 0 5 0 0 | * * * * * 24 * * | 0 0 1 1 0
.x .x3.o .. ♦ 0 6 | 0 0 3 6 | 0 0 0 0 3 2 | * * * * * * 20 * | 1 0 0 0 1
.. .x3.o5.o ♦ 0 12 | 0 0 0 30 | 0 0 0 0 0 20 | * * * * * * * 2 | 0 0 0 1 1
---------------+-------+--------------+---------------------+-----------------------+-------------
ox ox3oo ..&#x ♦ 1 6 | 0 6 3 6 | 0 3 6 0 3 2 | 0 3 0 2 0 0 1 0 | 20 * * * *
ox ox .. xo&#x ♦ 2 4 | 1 8 2 2 | 0 4 4 4 1 0 | 0 2 2 0 2 0 0 0 | * 30 * * *
ox .. oo5xo&#x ♦ 5 2 | 5 10 1 0 | 1 5 0 10 0 0 | 0 0 5 0 0 2 0 0 | * * 12 * *
.. ox3oo5xo&#x ♦ 20 12 | 30 60 0 30 | 12 0 60 60 0 20 | 1 0 0 20 30 12 0 1 | * * * 2 *
.x .x3.o5.o ♦ 0 24 | 0 0 12 60 | 0 0 0 0 30 40 | 0 0 0 0 0 0 20 2 | * * * * 1
© 2004-2024 | top of page |