| Acronym | cubagike, cube || gike |
| Name | cube atop great icosahedron |
| Circumradius | 1 |
| Coordinates | where τ = (1+sqrt(5))/2; circumcenter here would be at origin |
| Face vector | 20, 66, 74, 28 |
| Confer |
|
This segmentochoron is special in that the bases belong to different symmetries, i.e. to C3 (cube = o3o4x) vs. H3 (gike = x3o5/2o).
As abstract polytope it is isomorphic to cubaike, thereby replacing gike by ike.
Incidence matrix according to Dynkin symbol
os3/2os4xo&#x → height = (sqrt(5)-1)/4 = 0.309017
(cube || gike)
o.3/2o.4o. | 8 * | 3 3 0 0 | 3 3 3 3 0 0 | 1 3 3 1 0
demi( .o3/2.o4.o ) | * 12 | 0 2 1 4 | 0 1 2 4 3 2 | 0 1 3 2 1
----------------------+------+------------+-----------------+-----------
.. .. x. | 2 0 | 12 * * * | 2 1 1 0 0 0 | 1 2 1 0 0
demi( oo3/2oo4oo&#x ) | 1 1 | * 24 * * | 0 1 1 2 0 0 | 0 1 2 1 0
.. .s4.o | 0 2 | * * 6 * | 0 0 2 0 2 0 | 0 1 2 0 1
sefa( .s3/2.s .. ) | 0 2 | * * * 24 | 0 0 0 1 1 1 | 0 0 1 1 1
----------------------+------+------------+-----------------+-----------
.. o.4x. | 4 0 | 4 0 0 0 | 6 * * * * * | 1 1 0 0 0
demi( .. .. xo ) | 2 1 | 1 2 0 0 | * 12 * * * * | 0 1 1 0 0
sefa( .. os4xo&#x ) | 2 2 | 1 2 1 0 | * * 12 * * * | 0 1 1 0 0
sefa( os3/2os ..&#x ) | 1 2 | 0 2 0 1 | * * * 24 * * | 0 0 1 1 0
sefa( .s3/2.s4.o ) | 0 3 | 0 0 1 2 | * * * * 12 * | 0 0 1 0 1
.s3/2.s .. | 0 3 | 0 0 0 3 | * * * * * 8 | 0 0 0 1 1
----------------------+------+------------+-----------------+-----------
o.3/2o.4x. ♦ 8 0 | 12 0 0 0 | 6 0 0 0 0 0 | 1 * * * *
.. os4xo&#x ♦ 4 2 | 4 4 1 0 | 1 2 2 0 0 0 | * 6 * * *
sefa( os3/2os4xo&#x ) ♦ 2 3 | 1 4 1 2 | 0 1 1 2 1 0 | * * 12 * *
os3/2os ..&#x ♦ 1 3 | 0 3 0 3 | 0 0 0 3 0 1 | * * * 8 *
.s3/2.s4.o ♦ 0 12 | 0 0 6 24 | 0 0 0 0 12 8 | * * * * 1
starting figure: ox3/2ox4xo&#x (cf. also reduced( ox3/2ox4xo&#x ))
x(xvo) x(vox) x(oxv)&#x → height(1,2) = height(1,3) = height(1,4) = (sqrt(5)-1)/4 = 0.309017
height(2,3) = height(2,4) = height(3,4) = 0
o(...) o(...) o(...) | 8 * * * | 1 1 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 1 1 1 1 0
.(o..) .(o..) .(o..) | * 4 * * | 0 0 0 2 0 0 1 2 2 0 0 0 | 0 0 0 2 1 2 2 0 0 0 0 0 1 2 2 0 | 0 1 1 2 2 0 0 0 1
.(.o.) .(.o.) .(.o.) | * * 4 * | 0 0 0 0 2 0 0 2 0 1 2 0 | 0 0 0 0 0 2 0 1 2 2 0 0 2 2 0 1 | 0 0 2 2 0 1 1 0 1
.(..o) .(..o) .(..o) | * * * 4 | 0 0 0 0 0 2 0 0 2 0 2 1 | 0 0 0 0 0 0 2 0 0 2 1 2 0 2 1 2 | 0 0 0 2 1 0 2 1 1
-------------------------+---------+-------------------------+---------------------------------+------------------
x(...) .(...) .(...) | 2 0 0 0 | 4 * * * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 | 1 1 0 0 1 0 0 1 0
.(...) x(...) .(...) | 2 0 0 0 | * 4 * * * * * * * * * * | 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 | 1 0 0 0 0 1 1 1 0
.(...) .(...) x(...) | 2 0 0 0 | * * 4 * * * * * * * * * | 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 | 1 1 1 0 0 1 0 0 0
o(o..) o(o..) o(o..)&#x | 1 1 0 0 | * * * 8 * * * * * * * * | 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 | 0 1 1 1 1 0 0 0 0
o(.o.) o(.o.) o(.o.)&#x | 1 0 1 0 | * * * * 8 * * * * * * * | 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 | 0 0 1 1 0 1 1 0 0
o(..o) o(..o) o(..o)&#x | 1 0 0 1 | * * * * * 8 * * * * * * | 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 | 0 0 0 1 1 0 1 1 0
.(x..) .(...) .(...) | 0 2 0 0 | * * * * * * 2 * * * * * | 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 | 0 1 0 0 2 0 0 0 1
.(oo.) .(oo.) .(oo.)&#x | 0 1 1 0 | * * * * * * * 8 * * * * | 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 | 0 0 1 1 0 0 0 0 1
.(o.o) .(o.o) .(o.o)&#x | 0 1 0 1 | * * * * * * * * 8 * * * | 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 | 0 0 0 1 1 0 0 0 1
.(...) .(...) .(.x.) | 0 0 2 0 | * * * * * * * * * 2 * * | 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 | 0 0 2 0 0 1 0 0 1
.(.oo) .(.oo) .(.oo)&#x | 0 0 1 1 | * * * * * * * * * * 8 * | 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 | 0 0 0 1 0 0 1 0 1
.(...) .(..x) .(...) | 0 0 0 2 | * * * * * * * * * * * 2 | 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 | 0 0 0 0 0 0 2 1 1
-------------------------+---------+-------------------------+---------------------------------+------------------
x(...) x(...) .(...) | 4 0 0 0 | 2 2 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * * * * * * * * * * * | 1 0 0 0 0 0 0 1 0
x(...) .(...) x(...) | 4 0 0 0 | 2 0 2 0 0 0 0 0 0 0 0 0 | * 2 * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0
.(...) x(...) x(...) | 4 0 0 0 | 0 2 2 0 0 0 0 0 0 0 0 0 | * * 2 * * * * * * * * * * * * * | 1 0 0 0 0 1 0 0 0
x(x..) .(...) .(...)&#x | 2 2 0 0 | 1 0 0 2 0 0 1 0 0 0 0 0 | * * * 4 * * * * * * * * * * * * | 0 1 0 0 1 0 0 0 0
.(...) .(...) x(o..)&#x | 2 1 0 0 | 0 0 1 2 0 0 0 0 0 0 0 0 | * * * * 4 * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0
o(oo.) o(oo.) o(oo.)&#x | 1 1 1 0 | 0 0 0 1 1 0 0 1 0 0 0 0 | * * * * * 8 * * * * * * * * * * | 0 0 1 1 0 0 0 0 0
o(o.o) o(o.o) o(o.o)&#x | 1 1 0 1 | 0 0 0 1 0 1 0 0 1 0 0 0 | * * * * * * 8 * * * * * * * * * | 0 0 0 1 1 0 0 0 0
.(...) x(.o.) .(...)&#x | 2 0 1 0 | 0 1 0 0 2 0 0 0 0 0 0 0 | * * * * * * * 4 * * * * * * * * | 0 0 0 0 0 1 1 0 0
.(...) .(...) x(.x.)&#x | 2 0 2 0 | 0 0 1 0 2 0 0 0 0 1 0 0 | * * * * * * * * 4 * * * * * * * | 0 0 1 0 0 1 0 0 0
o(.oo) o(.oo) o(.oo)&#x | 1 0 1 1 | 0 0 0 0 1 1 0 0 0 0 1 0 | * * * * * * * * * 8 * * * * * * | 0 0 0 1 0 0 1 0 0
x(..o) .(...) .(...)&#x | 2 0 0 1 | 1 0 0 0 0 2 0 0 0 0 0 0 | * * * * * * * * * * 4 * * * * * | 0 0 0 0 1 0 0 1 0
.(...) x(..x) .(...)&#x | 2 0 0 2 | 0 1 0 0 0 2 0 0 0 0 0 1 | * * * * * * * * * * * 4 * * * * | 0 0 0 0 0 0 1 1 0
.(...) .(...) .(ox.)&#x | 0 1 2 0 | 0 0 0 0 0 0 0 2 0 1 0 0 | * * * * * * * * * * * * 4 * * * | 0 0 1 0 0 0 0 0 1
.(ooo) .(ooo) .(ooo)&#x | 0 1 1 1 | 0 0 0 0 0 0 0 1 1 0 1 0 | * * * * * * * * * * * * * 8 * * | 0 0 0 1 0 0 0 0 1
.(x.o) .(...) .(...)&#x | 0 2 0 1 | 0 0 0 0 0 0 1 0 2 0 0 0 | * * * * * * * * * * * * * * 4 * | 0 0 0 0 1 0 0 0 1
.(...) .(.ox) .(...)&#x | 0 0 1 2 | 0 0 0 0 0 0 0 0 0 0 2 1 | * * * * * * * * * * * * * * * 4 | 0 0 0 0 0 0 1 0 1
-------------------------+---------+-------------------------+---------------------------------+------------------
x(...) x(...) x(...) | 8 0 0 0 | 4 4 4 0 0 0 0 0 0 0 0 0 | 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * * cube
x(x..) .(...) x(o..)&#x | 4 2 0 0 | 2 0 2 4 0 0 1 0 0 0 0 0 | 0 1 0 2 2 0 0 0 0 0 0 0 0 0 0 0 | * 2 * * * * * * * trip
.(...) .(...) x(ox.)&#x | 2 1 2 0 | 0 0 1 2 2 0 0 2 0 1 0 0 | 0 0 0 0 1 2 0 0 1 0 0 0 1 0 0 0 | * * 4 * * * * * * squippy
o(ooo) o(ooo) o(ooo)&#x | 1 1 1 1 | 0 0 0 1 1 1 0 1 1 0 1 0 | 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 | * * * 8 * * * * * tet
x(x.o) .(...) .(...)&#x | 2 2 0 1 | 1 0 0 2 0 2 1 0 2 0 0 0 | 0 0 0 1 0 0 2 0 0 0 1 0 0 0 1 0 | * * * * 4 * * * * squippy
.(...) x(.o.) x(.x.)&#x | 4 0 2 0 | 0 2 2 0 4 0 0 0 0 1 0 0 | 0 0 1 0 0 0 0 2 2 0 0 0 0 0 0 0 | * * * * * 2 * * * trip
.(...) x(.ox) .(...)&#x | 2 0 1 2 | 0 1 0 0 2 2 0 0 0 0 2 1 | 0 0 0 0 0 0 0 1 0 2 0 1 0 0 0 1 | * * * * * * 4 * * squippy
x(..o) x(..x) .(...)&#x | 4 0 0 2 | 2 2 0 0 0 4 0 0 0 0 0 1 | 1 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 | * * * * * * * 2 * trip
.(xvo) .(vox) .(oxv)&#zx | 0 4 4 4 | 0 0 0 0 0 0 2 8 8 2 8 2 | 0 0 0 0 0 0 0 0 0 0 0 0 4 8 4 4 | * * * * * * * * 1 gike
© 2004-2025 | top of page |