Acronym ..., cont || grico Name (degenerate) cont atop grico Circumradius ∞   i.e. flat in euclidean space Confer general polytopal classes: decomposition

It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.

Incidence matrix according to Dynkin symbol

```ox3xx4xx3oo&#x   → height = 0
(cont || grico)

o.3o.4o.3o.    | 288   * |   2   2   2   0   0   0 |  1   4  1   1   2   4  0   0   0   0 |  2  2  1   2   4   2  0  0  0 | 1  2  1  2 0
.o3.o4.o3.o    |   * 576 |   0   0   1   1   1   2 |  0   0  0   1   1   2  1   2   2   1 |  0  0  1   2   2   1  2  1  1 | 0  2  1  1 1
---------------+---------+-------------------------+--------------------------------------+-------------------------------+-------------
.. x. .. ..    |   2   0 | 288   *   *   *   *   * |  1   2  0   0   1   0  0   0   0   0 |  2  1  1   0   2   0  0  0  0 | 1  2  0  1 0
.. .. x. ..    |   2   0 |   * 288   *   *   *   * |  0   2  1   0   0   2  0   0   0   0 |  1  2  0   1   2   2  0  0  0 | 1  1  1  2 0
oo3oo4oo3oo&#x |   1   1 |   *   * 576   *   *   * |  0   0  0   1   1   2  0   0   0   0 |  0  0  1   2   2   1  0  0  0 | 0  2  1  1 0
.x .. .. ..    |   0   2 |   *   *   * 288   *   * |  0   0  0   1   0   0  1   2   0   0 |  0  0  1   2   0   0  2  1  0 | 0  2  1  0 1
.. .x .. ..    |   0   2 |   *   *   *   * 288   * |  0   0  0   0   1   0  1   0   2   0 |  0  0  1   0   2   0  2  0  1 | 0  2  0  1 1
.. .. .x ..    |   0   2 |   *   *   *   *   * 576 |  0   0  0   0   0   1  0   1   1   1 |  0  0  0   1   1   1  1  1  1 | 0  1  1  1 1
---------------+---------+-------------------------+--------------------------------------+-------------------------------+-------------
o.3x. .. ..    |   3   0 |   3   0   0   0   0   0 | 96   *  *   *   *   *  *   *   *   * |  2  0  1   0   0   0  0  0  0 | 1  2  0  0 0
.. x.4x. ..    |   8   0 |   4   4   0   0   0   0 |  * 144  *   *   *   *  *   *   *   * |  1  1  0   0   1   0  0  0  0 | 1  1  0  1 0
.. .. x.3o.    |   3   0 |   0   3   0   0   0   0 |  *   * 96   *   *   *  *   *   *   * |  0  2  0   0   0   2  0  0  0 | 1  0  1  2 0
ox .. .. ..&#x |   1   2 |   0   0   2   1   0   0 |  *   *  * 288   *   *  *   *   *   * |  0  0  1   2   0   0  0  0  0 | 0  2  1  0 0
.. xx .. ..&#x |   2   2 |   1   0   2   0   1   0 |  *   *  *   * 288   *  *   *   *   * |  0  0  1   0   2   0  0  0  0 | 0  2  0  1 0
.. .. xx ..&#x |   2   2 |   0   1   2   0   0   1 |  *   *  *   *   * 576  *   *   *   * |  0  0  0   1   1   1  0  0  0 | 0  1  1  1 0
.x3.x .. ..    |   0   6 |   0   0   0   3   3   0 |  *   *  *   *   *   * 96   *   *   * |  0  0  1   0   0   0  2  0  0 | 0  2  0  0 1
.x .. .x ..    |   0   4 |   0   0   0   2   0   2 |  *   *  *   *   *   *  * 288   *   * |  0  0  0   1   0   0  1  1  0 | 0  1  1  0 1
.. .x4.x ..    |   0   8 |   0   0   0   0   4   4 |  *   *  *   *   *   *  *   * 144   * |  0  0  0   0   1   0  1  0  1 | 0  1  0  1 1
.. .. .x3.o    |   0   3 |   0   0   0   0   0   3 |  *   *  *   *   *   *  *   *   * 192 |  0  0  0   0   0   1  0  1  1 | 0  0  1  1 1
---------------+---------+-------------------------+--------------------------------------+-------------------------------+-------------
o.3x.4x. ..    ♦  24   0 |  24  12   0   0   0   0 |  8   6  0   0   0   0  0   0   0   0 | 24  *  *   *   *   *  *  *  * | 1  1  0  0 0
.. x.4x.3o.    ♦  24   0 |  12  24   0   0   0   0 |  0   6  8   0   0   0  0   0   0   0 |  * 24  *   *   *   *  *  *  * | 1  0  0  1 0
ox3xx .. ..&#x ♦   3   6 |   3   0   6   3   3   0 |  1   0  0   3   3   0  1   0   0   0 |  *  * 96   *   *   *  *  *  * | 0  2  0  0 0
ox .. xx ..&#x ♦   2   4 |   0   1   4   2   0   2 |  0   0  0   2   0   2  0   1   0   0 |  *  *  * 288   *   *  *  *  * | 0  1  1  0 0
.. xx4xx ..&#x ♦   8   8 |   4   4   8   0   4   4 |  0   1  0   0   4   4  0   0   1   0 |  *  *  *   * 144   *  *  *  * | 0  1  0  1 0
.. .. xx3oo&#x ♦   3   3 |   0   3   3   0   0   3 |  0   0  1   0   0   3  0   0   0   1 |  *  *  *   *   * 192  *  *  * | 0  0  1  1 0
.x3.x4.x ..    ♦   0  48 |   0   0   0  24  24  24 |  0   0  0   0   0   0  8  12   6   0 |  *  *  *   *   *   * 24  *  * | 0  1  0  0 1
.x .. .x3.o    ♦   0   6 |   0   0   0   3   0   6 |  0   0  0   0   0   0  0   3   0   2 |  *  *  *   *   *   *  * 96  * | 0  0  1  0 1
.. .x4.x3.o    ♦   0  24 |   0   0   0   0  12  24 |  0   0  0   0   0   0  0   0   6   8 |  *  *  *   *   *   *  *  * 24 | 0  0  0  1 1
---------------+---------+-------------------------+--------------------------------------+-------------------------------+-------------
o.3x.4x.3o.    ♦ 288   0 | 288 288   0   0   0   0 | 96 144 96   0   0   0  0   0   0   0 | 24 24  0   0   0   0  0  0  0 | 1  *  *  * *
ox3xx4xx ..&#x ♦  24  48 |  24  12  48  24  24  24 |  8   6  0  24  24  24  8  12   6   0 |  1  0  8  12   6   0  1  0  0 | * 24  *  * *
ox .. xx3oo&#x ♦   3   6 |   0   3   6   3   0   6 |  0   0  1   3   0   6  0   3   0   2 |  0  0  0   3   0   2  0  1  0 | *  * 96  * *
.. xx4xx3oo&#x ♦  24  24 |  12  24  24   0  12  24 |  0   6  8   0  12  24  0   0   6   8 |  0  1  0   0   6   8  0  0  1 | *  *  * 24 *
.x3.x4.x3.o    ♦   0 576 |   0   0   0 288 288 576 |  0   0  0   0   0   0 96 288 144 192 |  0  0  0   0   0   0 24 96 24 | *  *  *  * 1
```