Acronym | tratriddipdit |
Name |
(triangle,triangular duoprism)-duotegum, tegum product of triangle and triangular duoprism |
Face vector | 12, 48, 96, 105, 63, 18 |
Due to the matching circumradii of the tegum product factors the lacing edges of this polypeton are of unit size too. Accordingly it qualifies as an 6D CRF.
Incidence matrix according to Dynkin symbol
xo3oo ox3oo ox3oo&#zx → height = 0 (tegum product of {3} and triddip) o.3o. o.3o. o.3o. | 3 * | 2 9 0 0 | 18 9 9 0 0 0 | 18 18 3 9 3 0 0 | 6 18 6 3 3 | 6 6 .o3.o .o3.o .o3.o | * 9 | 0 3 2 2 | 3 6 6 1 4 1 | 6 6 3 12 3 2 2 | 3 12 3 6 6 | 6 6 ----------------------+-----+----------+----------------+------------------+------------+---- x. .. .. .. .. .. | 2 0 | 3 * * * ♦ 9 0 0 0 0 0 | 9 9 0 0 0 0 0 | 3 9 3 0 0 | 3 3 oo3oo oo3oo oo3oo&#x | 1 1 | * 27 * * | 2 2 2 0 0 0 | 4 4 1 4 1 0 0 | 2 8 2 2 2 | 4 4 .. .. x. .. .. .. | 0 2 | * * 9 * | 0 3 0 1 2 0 | 3 0 3 6 0 2 1 | 3 6 0 6 3 | 6 3 .. .. .. .. x. .. | 0 2 | * * * 9 | 0 0 3 0 2 1 | 0 3 0 6 3 1 2 | 0 6 3 3 6 | 3 6 ----------------------+-----+----------+----------------+------------------+------------+---- xo .. .. .. .. ..&#x | 2 1 | 1 2 0 0 | 27 * * * * * | 2 2 0 0 0 0 0 | 1 4 1 0 0 | 2 2 .. .. ox .. .. ..&#x | 1 2 | 0 2 1 0 | * 27 * * * * | 2 0 1 2 0 0 0 | 2 4 0 2 1 | 4 2 .. .. .. .. ox ..&#x | 1 2 | 0 2 0 1 | * * 27 * * * | 0 2 0 2 1 0 0 | 0 4 2 1 2 | 2 4 .. .. .x3.o .. .. | 0 3 | 0 0 3 0 | * * * 3 * * | 0 0 3 0 0 2 0 | 3 0 0 6 0 | 6 0 .. .. .x .. .x .. | 0 4 | 0 0 2 2 | * * * * 9 * | 0 0 0 3 0 1 1 | 0 3 0 3 3 | 3 3 .. .. .. .. .x3.o | 0 3 | 0 0 0 3 | * * * * * 3 | 0 0 0 0 3 0 2 | 0 0 3 0 6 | 0 6 ----------------------+-----+----------+----------------+------------------+------------+---- xo .. ox .. .. ..&#x ♦ 2 2 | 1 4 1 0 | 2 2 0 0 0 0 | 27 * * * * * * | 1 2 0 0 0 | 2 1 xo .. .. .. ox ..&#x ♦ 2 2 | 1 4 0 1 | 2 0 2 0 0 0 | * 27 * * * * * | 0 2 1 0 0 | 1 2 .. .. ox3oo .. ..&#x ♦ 1 3 | 0 3 3 0 | 0 3 0 1 0 0 | * * 9 * * * * | 2 0 0 2 0 | 4 0 .. .. ox .. ox ..&#x ♦ 1 4 | 0 4 2 2 | 0 2 2 0 1 0 | * * * 27 * * * | 0 2 0 1 1 | 2 2 .. .. .. .. ox3oo&#x ♦ 1 3 | 0 3 0 3 | 0 0 3 0 0 1 | * * * * 9 * * | 0 0 2 0 2 | 0 4 .. .. .x3.o .x .. ♦ 0 6 | 0 0 6 3 | 0 0 0 2 3 0 | * * * * * 3 * | 0 0 0 3 0 | 3 0 .. .. .x .. .x3.o ♦ 0 6 | 0 0 3 6 | 0 0 0 0 3 2 | * * * * * * 3 | 0 0 0 0 3 | 0 3 ----------------------+-----+----------+----------------+------------------+------------+---- xo .. ox3oo .. ..&#x ♦ 2 3 | 1 6 3 0 | 3 6 0 1 0 0 | 3 0 2 0 0 0 0 | 9 * * * * | 2 0 xo .. ox .. ox ..&#x ♦ 2 4 | 1 8 2 2 | 4 4 4 0 1 0 | 2 2 0 2 0 0 0 | * 27 * * * | 1 1 xo .. .. .. ox3oo&#x ♦ 2 3 | 1 6 0 3 | 3 0 6 0 0 1 | 0 3 0 0 2 0 0 | * * 9 * * | 0 2 .. .. ox3oo ox ..&#x ♦ 1 6 | 0 6 6 3 | 0 6 3 2 3 0 | 0 0 2 3 0 1 0 | * * * 9 * | 2 0 .. .. ox .. ox3oo&#x ♦ 1 6 | 0 6 3 6 | 0 3 6 0 3 2 | 0 0 0 3 2 0 1 | * * * * 9 | 0 2 ----------------------+-----+----------+----------------+------------------+------------+---- xo .. ox3oo ox ..&#x ♦ 2 6 | 1 12 6 3 | 6 12 6 2 3 0 | 6 3 4 6 0 1 0 | 2 3 0 2 0 | 9 * xo .. ox .. ox3oo&#x ♦ 2 6 | 1 12 3 6 | 6 6 12 0 3 2 | 3 6 0 6 4 0 1 | 0 3 2 0 2 | * 9
or o.3o. o.3o. o.3o. | 3 * | 2 9 0 | 18 18 0 0 | 36 6 9 0 | 12 18 6 | 12 .o3.o .o3.o .o3.o | * 9 | 0 3 4 | 3 12 2 4 | 12 6 12 4 | 6 12 12 | 12 ------------------------+-----+---------+-----------+------------+----------+--- x. .. .. .. .. .. | 2 0 | 3 * * ♦ 9 0 0 0 | 18 0 0 0 | 6 9 0 | 6 oo3oo oo3oo oo3oo&#x | 1 1 | * 27 * | 2 4 0 0 | 8 2 4 0 | 4 8 4 | 8 .. .. x. .. .. .. & | 0 2 | * * 18 | 0 3 1 2 | 3 3 6 3 | 3 6 9 | 9 ------------------------+-----+---------+-----------+------------+----------+--- xo .. .. .. .. ..&#x | 2 1 | 1 2 0 | 27 * * * | 4 0 0 0 | 2 4 0 | 4 .. .. ox .. .. ..&#x & | 1 2 | 0 2 1 | * 54 * * | 2 1 2 0 | 2 4 3 | 6 .. .. .x3.o .. .. & | 0 3 | 0 0 3 | * * 6 * | 0 3 0 2 | 3 0 6 | 6 .. .. .x .. .x .. | 0 4 | 0 0 4 | * * * 9 | 0 0 3 2 | 0 3 6 | 6 ------------------------+-----+---------+-----------+------------+----------+--- xo .. ox .. .. ..&#x & ♦ 2 2 | 1 4 1 | 2 2 0 0 | 54 * * * | 1 2 0 | 3 .. .. ox3oo .. ..&#x & ♦ 1 3 | 0 3 3 | 0 3 1 0 | * 18 * * | 2 0 2 | 4 .. .. ox .. ox ..&#x ♦ 1 4 | 0 4 4 | 0 4 0 1 | * * 27 * | 0 2 2 | 4 .. .. .x3.o .x .. & ♦ 0 6 | 0 0 9 | 0 0 2 3 | * * * 6 | 0 0 3 | 3 ------------------------+-----+---------+-----------+------------+----------+--- xo .. ox3oo .. ..&#x & ♦ 2 3 | 1 6 3 | 3 6 1 0 | 3 2 0 0 | 18 * * | 2 xo .. ox .. ox ..&#x ♦ 2 4 | 1 8 4 | 4 8 0 1 | 4 0 2 0 | * 27 * | 2 .. .. ox3oo ox ..&#x & ♦ 1 6 | 0 6 9 | 0 9 2 3 | 0 2 3 1 | * * 18 | 2 ------------------------+-----+---------+-----------+------------+----------+--- xo .. ox3oo ox ..&#x & ♦ 2 6 | 1 12 9 | 6 18 2 3 | 9 4 6 1 | 2 3 2 | 18
© 2004-2025 | top of page |