Acronym tratriddipdit Name (triangle,triangular duoprism)-duotegum,tegum product of triangle and triangular duoprism

Due to the matching circumradii of the tegum product factors the lacing edges of this polypeton are of unit size too. Accordingly it qualifies as an 6D CRF.

Incidence matrix according to Dynkin symbol

```xo3oo ox3oo ox3oo&#zx   → height = 0
(tegum product of {3} and triddip)

o.3o. o.3o. o.3o.     | 3 * | 2  9 0 0 | 18  9  9 0 0 0 | 18 18 3  9 3 0 0 | 6 18 6 3 3 | 6 6
.o3.o .o3.o .o3.o     | * 9 | 0  3 2 2 |  3  6  6 1 4 1 |  6  6 3 12 3 2 2 | 3 12 3 6 6 | 6 6
----------------------+-----+----------+----------------+------------------+------------+----
x. .. .. .. .. ..     | 2 0 | 3  * * * ♦  9  0  0 0 0 0 |  9  9 0  0 0 0 0 | 3  9 3 0 0 | 3 3
oo3oo oo3oo oo3oo&#x  | 1 1 | * 27 * * |  2  2  2 0 0 0 |  4  4 1  4 1 0 0 | 2  8 2 2 2 | 4 4
.. .. x. .. .. ..     | 0 2 | *  * 9 * |  0  3  0 1 2 0 |  3  0 3  6 0 2 1 | 3  6 0 6 3 | 6 3
.. .. .. .. x. ..     | 0 2 | *  * * 9 |  0  0  3 0 2 1 |  0  3 0  6 3 1 2 | 0  6 3 3 6 | 3 6
----------------------+-----+----------+----------------+------------------+------------+----
xo .. .. .. .. ..&#x  | 2 1 | 1  2 0 0 | 27  *  * * * * |  2  2 0  0 0 0 0 | 1  4 1 0 0 | 2 2
.. .. ox .. .. ..&#x  | 1 2 | 0  2 1 0 |  * 27  * * * * |  2  0 1  2 0 0 0 | 2  4 0 2 1 | 4 2
.. .. .. .. ox ..&#x  | 1 2 | 0  2 0 1 |  *  * 27 * * * |  0  2 0  2 1 0 0 | 0  4 2 1 2 | 2 4
.. .. .x3.o .. ..     | 0 3 | 0  0 3 0 |  *  *  * 3 * * |  0  0 3  0 0 2 0 | 3  0 0 6 0 | 6 0
.. .. .x .. .x ..     | 0 4 | 0  0 2 2 |  *  *  * * 9 * |  0  0 0  3 0 1 1 | 0  3 0 3 3 | 3 3
.. .. .. .. .x3.o     | 0 3 | 0  0 0 3 |  *  *  * * * 3 |  0  0 0  0 3 0 2 | 0  0 3 0 6 | 0 6
----------------------+-----+----------+----------------+------------------+------------+----
xo .. ox .. .. ..&#x  ♦ 2 2 | 1  4 1 0 |  2  2  0 0 0 0 | 27  * *  * * * * | 1  2 0 0 0 | 2 1
xo .. .. .. ox ..&#x  ♦ 2 2 | 1  4 0 1 |  2  0  2 0 0 0 |  * 27 *  * * * * | 0  2 1 0 0 | 1 2
.. .. ox3oo .. ..&#x  ♦ 1 3 | 0  3 3 0 |  0  3  0 1 0 0 |  *  * 9  * * * * | 2  0 0 2 0 | 4 0
.. .. ox .. ox ..&#x  ♦ 1 4 | 0  4 2 2 |  0  2  2 0 1 0 |  *  * * 27 * * * | 0  2 0 1 1 | 2 2
.. .. .. .. ox3oo&#x  ♦ 1 3 | 0  3 0 3 |  0  0  3 0 0 1 |  *  * *  * 9 * * | 0  0 2 0 2 | 0 4
.. .. .x3.o .x ..     ♦ 0 6 | 0  0 6 3 |  0  0  0 2 3 0 |  *  * *  * * 3 * | 0  0 0 3 0 | 3 0
.. .. .x .. .x3.o     ♦ 0 6 | 0  0 3 6 |  0  0  0 0 3 2 |  *  * *  * * * 3 | 0  0 0 0 3 | 0 3
----------------------+-----+----------+----------------+------------------+------------+----
xo .. ox3oo .. ..&#x  ♦ 2 3 | 1  6 3 0 |  3  6  0 1 0 0 |  3  0 2  0 0 0 0 | 9  * * * * | 2 0
xo .. ox .. ox ..&#x  ♦ 2 4 | 1  8 2 2 |  4  4  4 0 1 0 |  2  2 0  2 0 0 0 | * 27 * * * | 1 1
xo .. .. .. ox3oo&#x  ♦ 2 3 | 1  6 0 3 |  3  0  6 0 0 1 |  0  3 0  0 2 0 0 | *  * 9 * * | 0 2
.. .. ox3oo ox ..&#x  ♦ 1 6 | 0  6 6 3 |  0  6  3 2 3 0 |  0  0 2  3 0 1 0 | *  * * 9 * | 2 0
.. .. ox .. ox3oo&#x  ♦ 1 6 | 0  6 3 6 |  0  3  6 0 3 2 |  0  0 0  3 2 0 1 | *  * * * 9 | 0 2
----------------------+-----+----------+----------------+------------------+------------+----
xo .. ox3oo ox ..&#x  ♦ 2 6 | 1 12 6 3 |  6 12  6 2 3 0 |  6  3 4  6 0 1 0 | 2  3 0 2 0 | 9 *
xo .. ox .. ox3oo&#x  ♦ 2 6 | 1 12 3 6 |  6  6 12 0 3 2 |  3  6 0  6 4 0 1 | 0  3 2 0 2 | * 9
```
```or
o.3o. o.3o. o.3o.       | 3 * | 2  9  0 | 18 18 0 0 | 36  6  9 0 | 12 18  6 | 12
.o3.o .o3.o .o3.o       | * 9 | 0  3  4 |  3 12 2 4 | 12  6 12 4 |  6 12 12 | 12
------------------------+-----+---------+-----------+------------+----------+---
x. .. .. .. .. ..       | 2 0 | 3  *  * ♦  9  0 0 0 | 18  0  0 0 |  6  9  0 |  6
oo3oo oo3oo oo3oo&#x    | 1 1 | * 27  * |  2  4 0 0 |  8  2  4 0 |  4  8  4 |  8
.. .. x. .. .. ..     & | 0 2 | *  * 18 |  0  3 1 2 |  3  3  6 3 |  3  6  9 |  9
------------------------+-----+---------+-----------+------------+----------+---
xo .. .. .. .. ..&#x    | 2 1 | 1  2  0 | 27  * * * |  4  0  0 0 |  2  4  0 |  4
.. .. ox .. .. ..&#x  & | 1 2 | 0  2  1 |  * 54 * * |  2  1  2 0 |  2  4  3 |  6
.. .. .x3.o .. ..     & | 0 3 | 0  0  3 |  *  * 6 * |  0  3  0 2 |  3  0  6 |  6
.. .. .x .. .x ..       | 0 4 | 0  0  4 |  *  * * 9 |  0  0  3 2 |  0  3  6 |  6
------------------------+-----+---------+-----------+------------+----------+---
xo .. ox .. .. ..&#x  & ♦ 2 2 | 1  4  1 |  2  2 0 0 | 54  *  * * |  1  2  0 |  3
.. .. ox3oo .. ..&#x  & ♦ 1 3 | 0  3  3 |  0  3 1 0 |  * 18  * * |  2  0  2 |  4
.. .. ox .. ox ..&#x    ♦ 1 4 | 0  4  4 |  0  4 0 1 |  *  * 27 * |  0  2  2 |  4
.. .. .x3.o .x ..     & ♦ 0 6 | 0  0  9 |  0  0 2 3 |  *  *  * 6 |  0  0  3 |  3
------------------------+-----+---------+-----------+------------+----------+---
xo .. ox3oo .. ..&#x  & ♦ 2 3 | 1  6  3 |  3  6 1 0 |  3  2  0 0 | 18  *  * |  2
xo .. ox .. ox ..&#x    ♦ 2 4 | 1  8  4 |  4  8 0 1 |  4  0  2 0 |  * 27  * |  2
.. .. ox3oo ox ..&#x  & ♦ 1 6 | 0  6  9 |  0  9 2 3 |  0  2  3 1 |  *  * 18 |  2
------------------------+-----+---------+-----------+------------+----------+---
xo .. ox3oo ox ..&#x  & ♦ 2 6 | 1 12  9 |  6 18 2 3 |  9  4  6 1 |  2  3  2 | 18
```