Acronym ritrah Name hyperbolic rectified triangular-tiling honeycomb ` ©` Circumradius 1 i Confer related hyperbolic polytopes: x3o6o3o   o6x3o3o3*b   o3o3o6x   general polytopal classes: partial Stott expansions Externallinks

This non-compact hyperbolic tesselation uses hexat and that in the sense of an infinite horohedron as its cell types.

Incidence matrix according to Dynkin symbol

```o3x6o3o   (N,M,K → ∞)

. . . . | NMK |    6 |   3   6 |  3  2
--------+-----+------+---------+------
. x . . |   2 | 3NMK |   1   2 |  2  1
--------+-----+------+---------+------
o3x . . |   3 |    3 | NMK   * |  2  0
. x6o . |   6 |    6 |   * NMK |  1  1
--------+-----+------+---------+------
o3x6o . ♦  3M |   6M |  2M   M | NK  *
. x6o3o ♦  2K |   3K |   0   K |  * NM
```

```o6x3x3o3*b   (N,M,K,L → ∞)

. . . .    | 3NMKL |     4     2 |    2     4     2    1 |   2   1    2
-----------+-------+-------------+-----------------------+-------------
. x . .    |     2 | 6NMKL     * |    1     1     1    0 |   1   1    1
. . x .    |     2 |     * 3NMKL |    0     2     0    1 |   1   0    2
-----------+-------+-------------+-----------------------+-------------
o6x . .    |     6 |     6     0 | NMKL     *     *    * |   1   1    0
. x3x .    |     6 |     3     3 |    * 2NMKL     *    * |   1   0    1
. x . o3*b |     3 |     3     0 |    *     * 2NMKL    * |   0   1    1
. . x3o    |     3 |     0     3 |    *     *     * NMKL |   0   0    2
-----------+-------+-------------+-----------------------+-------------
o6x3x .    ♦    6M |    6M    3M |    M    2M     0    0 | NKL   *    *
o6x . o3*b ♦    3K |    6K     0 |    K     0    2K    0 |   * NML    *
. x3x3o3*b ♦    3L |    3L    3L |    0     L     L    L |   *   * 2NMK
```

```x3x3x3o3*a3*c *b3*d   (N,M,K,L,P → ∞)

. . . .             | 3NMKLP |      2      2      2 |     2     2     1     2     1     1 |    2    1    1    1
--------------------+--------+----------------------+-------------------------------------+--------------------
x . . .             |      2 | 3NMKLP      *      * |     1     1     1     0     0     0 |    1    1    1    0
. x . .             |      2 |      * 3NMKLP      * |     1     0     0     1     1     0 |    1    1    0    1
. . x .             |      2 |      *      * 3NMKLP |     0     1     0     1     0     1 |    1    0    1    1
--------------------+--------+----------------------+-------------------------------------+--------------------
x3x . .             |      6 |      3      3      0 | NMKLP     *     *     *     *     * |    1    1    0    0
x . x . *a3*c       |      6 |      3      0      3 |     * NMKLP     *     *     *     * |    1    0    1    0
x . . o3*a          |      3 |      3      0      0 |     *     * NMKLP     *     *     * |    0    1    1    0
. x3x .             |      6 |      0      3      3 |     *     *     * NMKLP     *     * |    1    0    0    1
. x . o       *b3*d |      3 |      0      3      0 |     *     *     *     * NMKLP     * |    0    1    0    1
. . x3o             |      3 |      0      0      3 |     *     *     *     *     * NMKLP |    0    0    1    1
--------------------+--------+----------------------+-------------------------------------+--------------------
x3x3x . *a3*c       ♦     6M |     3M     3M     3M |     M     M     0     M     0     0 | NKLP    *    *    *
x3x . o3*a    *b3*d ♦     3K |     3K     3K      0 |     K     0     K     0     K     0 |    * NMLP    *    *
x . x3o3*a3*c       ♦     3L |     3L      0     3L |     0     L     L     0     0     L |    *    * NMKP    *
. x3x3o       *b3*d ♦     3P |      0     3P     3P |     0     0     0     P     P     P |    *    *    * NMKL
```