Acronym | tispic |
Name | truncated small prismated tetracontoctachoron |
Circumradius | sqrt[(2+sqrt(2))y2+(7+4 sqrt(2))y+(7+4 sqrt(2))] |
Face vector | 1152, 2880, 2112, 384 |
Confer | |
Confer |
|
External links |
Truncation would result in 3 different edge sizes in the outcome isohedral polychoron. That one here is scaled such so that the shorter specified one becomes unity. Then the larger specified edge will have size q=sqrt(2). The third one would be the arbitrary expansion size y (wrt. the rectified extremum, i.e. corresponding to the arbitrary truncation depth). In fact, for y=0 this results again in respic, while y → ∞ results again in the pre-image spic (rescaled back down accordingly).
Incidence matrix according to Dynkin symbol
by3ox4xo3yb&#zq → height = 0 y > 0 (depending on truncation depth) b = y+2 (pseudo) (q-laced tegum sum of 2 inverted (b,x,y)-pricos) o.3o.4o.3o. & | 1152 | 2 1 2 | 1 2 2 3 | 1 3 1 ------------------+------+---------------+------------------+----------- .. .. x. .. & | 2 | 1152 * * | 1 1 0 1 | 1 1 1 x .. .. .. y. & | 2 | * 576 * | 0 2 2 0 | 1 3 0 y oo3oo4oo3oo&#q | 2 | * * 1152 | 0 0 1 2 | 0 2 1 q ------------------+------+---------------+------------------+----------- .. o.4x. .. & | 4 | 4 0 0 | 288 * * * | 1 0 1 x-{3} .. .. x.3y. & | 6 | 3 3 0 | * 384 * * | 1 1 0 (x,y)-{6} by .. .. yb&#zq | 8 | 0 4 4 | * * 288 * | 0 2 0 (y,q)-{8} .. ox .. ..&#q & | 3 | 1 0 2 | * * * 1152 | 0 1 1 xqq ------------------+------+---------------+------------------+----------- .. o.4x.3y. & | 24 | 24 12 0 | 6 8 0 0 | 48 * * (x,y)-toe by3ox .. yb&#zq & | 18 | 6 9 12 | 0 2 3 6 | * 192 * titrip .. ox4xo ..&#q | 8 | 8 0 8 | 2 0 0 8 | * * 144 (x,q)-squap
© 2004-2024 | top of page |