Acronym tispic
Name truncated small prismated tetracontoctachoron
Circumradius sqrt[(2+sqrt(2))y2+(7+4 sqrt(2))y+(7+4 sqrt(2))]
Confer
extremal cases:
spic   respic  
Confer
general polytopal classes:
isogonal  
External
links
polytopewiki  

Truncation would result in 3 different edge sizes in the outcome isohedral polychoron. That one here is scaled such so that the shorter specified one becomes unity. Then the larger specified edge will have size q=sqrt(2). The third one would be the arbitrary expansion size y (wrt. the rectified extremum, i.e. corresponding to the arbitrary truncation depth). In fact, for y=0 this results again in respic, while y → ∞ results again in the pre-image spic (rescaled back down accordingly).


Incidence matrix according to Dynkin symbol

by3ox4xo3yb&#zq   → height = 0
                    y > 0 (depending on truncation depth)
                    b = y+2 (pseudo)
(q-laced tegum sum of 2 inverted (b,x,y)-pricos)

o.3o.4o.3o.     & | 1152 |    2   1    2 |   1   2   2    3 |  1   3   1
------------------+------+---------------+------------------+-----------
.. .. x. ..     & |    2 | 1152   *    * |   1   1   0    1 |  1   1   1  x
.. .. .. y.     & |    2 |    * 576    * |   0   2   2    0 |  1   3   0  y
oo3oo4oo3oo&#q    |    2 |    *   * 1152 |   0   0   1    2 |  0   2   1  q
------------------+------+---------------+------------------+-----------
.. o.4x. ..     & |    4 |    4   0    0 | 288   *   *    * |  1   0   1  x-{3}
.. .. x.3y.     & |    6 |    3   3    0 |   * 384   *    * |  1   1   0  (x,y)-{6}
by .. .. yb&#zq   |    8 |    0   4    4 |   *   * 288    * |  0   2   0  (y,q)-{8}
.. ox .. ..&#q  & |    3 |    1   0    2 |   *   *   * 1152 |  0   1   1  xqq
------------------+------+---------------+------------------+-----------
.. o.4x.3y.     & |   24 |   24  12    0 |   6   8   0    0 | 48   *   *  (x,y)-toe
by3ox .. yb&#zq & |   18 |    6   9   12 |   0   2   3    6 |  * 192   *  trunc-trip
.. ox4xo ..&#q    |    8 |    8   0    8 |   2   0   0    8 |  *   * 144  (x,q)-squap

© 2004-2021
top of page