Acronym (n/d, m/b)-dow
Name n/d-grammal m/b-grammal disphenoid,
{n/d} || perp {m/b}
Circumradius sqrt[1+1/(4 sin2(π d/n))]+1/(4 sin2(π b7m))/2
Lace hyper city
in approx. ASCII-art
                       
                       
                       
                       
        x-n/d-o        
                       
                       
                       
                       
{n/d}
        o-n/d-o        
                       
                       
o-n/d-o         o-n/d-o
                       
                       
                       
                       
   o-n/d-o   o-n/d-o   
perp {m/b} – example for m=5
Dual (selfdual)
Face vector n+m, nm+n+m, 2nm+2, nm+n+m, n+m
Especially n/d-dow (n=m,d=b)   hix (n=m=3,d=b=1)   stadow (n=m=5,d=b=2)   shadow (n=m=7,d=b=2)   ogdow (n=m=8,d=b=3)   togdow (n=8,d=3,m=3,b=1)  

These polytera are self-dual in general and are obtained as the pyramid product of an n/d-gram and an m/b-gram. (However, only those would happen to be noble and scaliform, where the 2 factors happens to be the same polygrams, i.e. if one restricts to n/d-dow only.)


Incidence matrix according to Dynkin symbol

xo-n/d-oo ox-n/d-oo&#x   → height = sqrt[1-1/(4 sin2(π d/n))-1/(4 sin2(π b/m))]
(pyramid product of {n/d} and {m/b})

o.-n/d-o. o.-m/b-o.    | n *  2  m 0 | 1 2m  m 0 | m 2m 1 | m 2
.o-n/d-.o .o-m/b-.o    | * m  0  n 2 | 0  n 2n 1 | 1 2n n | 2 n
-----------------------+-----+--------+-----------+--------+----
x.     .. ..     ..    | 2 0 | n  * *  1  m  0 0 | m  m 0 | m 1
oo-n/d-oo oo-m/b-oo&#x | 1 1 | * nm *  0  2  2 0 | 1  4 1 | 2 2
..     .. .x     ..    | 0 2 | *  * m  0  0  n 1 | 0  n n | 1 n
-----------------------+-----+--------+-----------+--------+----
x.-n/d-o. ..     ..    | n 0 | n  0 0 | 1  *  * * | m  0 0 | m 0
xo     .. ..     ..&#x | 2 1 | 1  2 0 | * nm  * * | 1  2 0 | 2 1
..     .. ox     ..&#x | 1 2 | 0  2 1 | *  * nm * | 0  2 1 | 1 2
..     .. .x-m/b-.o    | 0 m | 0  0 m | *  *  * 1 | 0  0 n | 0 n
-----------------------+-----+--------+-----------+--------+----
xo-n/d-oo ..     ..&#x  n 1 | n  n 0 | 1  n  0 0 | m  * * | 2 0
xo     .. ox     ..&#x  2 2 | 1  4 1 | 0  2  2 0 | * nm * | 1 1
..     .. ox-m/b-oo&#x  1 m | 0  m m | 0  0  m 1 | *  * n | 0 2
-----------------------+-----+--------+-----------+--------+----
xo-n/d-oo ox     ..&#x  n 2 | n 2n 1 | 1 2n  n 0 | 2  n 0 | m *
xo     .. ox-m/b-oo&#x  2 m | 1 2m m | 0  m 2m 1 | 0  m 2 | * n

© 2004-2024
top of page