Acronym | (n/d, m/b)-dow | ||
Name |
n/d-grammal m/b-grammal disphenoid, {n/d} || perp {m/b} | ||
Circumradius | sqrt[1+1/(4 sin2(π d/n))]+1/(4 sin2(π b7m))/2 | ||
Lace hyper city in approx. ASCII-art |
| ||
Dual | (selfdual) | ||
Face vector | n+m, nm+n+m, 2nm+2, nm+n+m, n+m | ||
Especially | n/d-dow (n=m,d=b) hix (n=m=3,d=b=1) stadow (n=m=5,d=b=2) shadow (n=m=7,d=b=2) ogdow (n=m=8,d=b=3) togdow (n=8,d=3,m=3,b=1) |
These polytera are self-dual in general and are obtained as the pyramid product of an n/d-gram and an m/b-gram. (However, only those would happen to be noble and scaliform, where the 2 factors happens to be the same polygrams, i.e. if one restricts to n/d-dow only.)
Incidence matrix according to Dynkin symbol
xo-n/d-oo ox-n/d-oo&#x → height = sqrt[1-1/(4 sin2(π d/n))-1/(4 sin2(π b/m))] (pyramid product of {n/d} and {m/b}) o.-n/d-o. o.-m/b-o. | n * ♦ 2 m 0 | 1 2m m 0 | m 2m 1 | m 2 .o-n/d-.o .o-m/b-.o | * m ♦ 0 n 2 | 0 n 2n 1 | 1 2n n | 2 n -----------------------+-----+--------+-----------+--------+---- x. .. .. .. | 2 0 | n * * ♦ 1 m 0 0 | m m 0 | m 1 oo-n/d-oo oo-m/b-oo&#x | 1 1 | * nm * ♦ 0 2 2 0 | 1 4 1 | 2 2 .. .. .x .. | 0 2 | * * m ♦ 0 0 n 1 | 0 n n | 1 n -----------------------+-----+--------+-----------+--------+---- x.-n/d-o. .. .. | n 0 | n 0 0 | 1 * * * | m 0 0 | m 0 xo .. .. ..&#x | 2 1 | 1 2 0 | * nm * * | 1 2 0 | 2 1 .. .. ox ..&#x | 1 2 | 0 2 1 | * * nm * | 0 2 1 | 1 2 .. .. .x-m/b-.o | 0 m | 0 0 m | * * * 1 | 0 0 n | 0 n -----------------------+-----+--------+-----------+--------+---- xo-n/d-oo .. ..&#x ♦ n 1 | n n 0 | 1 n 0 0 | m * * | 2 0 xo .. ox ..&#x ♦ 2 2 | 1 4 1 | 0 2 2 0 | * nm * | 1 1 .. .. ox-m/b-oo&#x ♦ 1 m | 0 m m | 0 0 m 1 | * * n | 0 2 -----------------------+-----+--------+-----------+--------+---- xo-n/d-oo ox ..&#x ♦ n 2 | n 2n 1 | 1 2n n 0 | 2 n 0 | m * xo .. ox-m/b-oo&#x ♦ 2 m | 1 2m m | 0 m 2m 1 | 0 m 2 | * n
© 2004-2024 | top of page |