Acronym ...
Name s4x2x3o,
trip-alternated todip
Circumradius ...
Face vector 12, 24, 19, 7
Confer
more general:
s2Nx2xMo  
uniform variant:
tisdip  
general polytopal classes:
isogonal  

This polychora is obtained by trip alternation of todip.

As mere alternation it comes out to be nothing but a tisdip variant. In fact, it then is simply w x x3o. Accordingly it obviously well could be resized to all unit edge lengths again.


Incidence matrix according to Dynkin symbol

s4x2x3o

demi( . . . . ) | 12 | 1  2 1 | 2 1 1 2 | 1 2 1
----------------+----+--------+---------+------
demi( . x . . ) |  2 | 6  * * | 2 0 1 0 | 1 2 0
demi( . . x . ) |  2 | * 12 * | 1 1 0 1 | 1 1 1
sefa( s4x . . ) |  2 | *  * 6 | 0 0 1 2 | 0 2 1  w
----------------+----+--------+---------+------
demi( . x x . ) |  4 | 2  2 0 | 6 * * * | 1 1 0
demi( . . x3o ) |  3 | 0  3 0 | * 4 * * | 1 0 1
      s4x . .   |  4 | 2  0 2 | * * 3 * | 0 2 0  x w
sefa( s4x2x . ) |  4 | 0  2 2 | * * * 6 | 0 1 1  x w
----------------+----+--------+---------+------
demi( . x x3o ) |  6 | 3  6 0 | 3 2 0 0 | 2 * *  trip (uniform)
      s4x2x .   |  8 | 4  4 4 | 2 0 2 2 | * 3 *  cube variant x4o w
sefa( s4x2x3o ) |  6 | 0  6 3 | 0 2 0 3 | * * 2  trip variant x3o w

starting figure: x4x x3o

w x x3o

. . . . | 12 | 1 1  2 | 1 2 2 1 | 2 1 1
--------+----+--------+---------+------
w . . . |  2 | 6 *  * | 1 2 0 0 | 2 1 0
. x . . |  2 | * 6  * | 1 0 2 0 | 2 0 1
. . x . |  2 | * * 12 | 0 1 1 1 | 1 1 1
--------+----+--------+---------+------
w x . . |  4 | 2 2  0 | 3 * * * | 2 0 0
w . x . |  4 | 2 0  2 | * 6 * * | 1 1 0
. x x . |  4 | 0 2  2 | * * 6 * | 1 0 1
. . x3o |  3 | 0 0  3 | * * * 4 | 0 1 1
--------+----+--------+---------+------
w x x . |  8 | 4 4  4 | 2 2 2 0 | 3 * *  cube variant
w . x3o |  6 | 3 0  6 | 0 3 0 2 | * 2 *  trip variant
. x x3o |  6 | 0 3  6 | 0 0 3 2 | * * 2  trip (uniform)

© 2004-2025
top of page