Acronym | ... |
Name |
s4x2x3o, trip-alternated todip |
Circumradius | ... |
Face vector | 12, 24, 19, 7 |
Confer |
This polychora is obtained by trip alternation of todip.
As mere alternation it comes out to be nothing but a tisdip variant. In fact, it then is simply w x x3o. Accordingly it obviously well could be resized to all unit edge lengths again.
Incidence matrix according to Dynkin symbol
s4x2x3o demi( . . . . ) | 12 | 1 2 1 | 2 1 1 2 | 1 2 1 ----------------+----+--------+---------+------ demi( . x . . ) | 2 | 6 * * | 2 0 1 0 | 1 2 0 demi( . . x . ) | 2 | * 12 * | 1 1 0 1 | 1 1 1 sefa( s4x . . ) | 2 | * * 6 | 0 0 1 2 | 0 2 1 w ----------------+----+--------+---------+------ demi( . x x . ) | 4 | 2 2 0 | 6 * * * | 1 1 0 demi( . . x3o ) | 3 | 0 3 0 | * 4 * * | 1 0 1 s4x . . | 4 | 2 0 2 | * * 3 * | 0 2 0 x w sefa( s4x2x . ) | 4 | 0 2 2 | * * * 6 | 0 1 1 x w ----------------+----+--------+---------+------ demi( . x x3o ) | 6 | 3 6 0 | 3 2 0 0 | 2 * * trip (uniform) s4x2x . | 8 | 4 4 4 | 2 0 2 2 | * 3 * cube variant x4o w sefa( s4x2x3o ) | 6 | 0 6 3 | 0 2 0 3 | * * 2 trip variant x3o w starting figure: x4x x3o
w x x3o . . . . | 12 | 1 1 2 | 1 2 2 1 | 2 1 1 --------+----+--------+---------+------ w . . . | 2 | 6 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 6 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 12 | 0 1 1 1 | 1 1 1 --------+----+--------+---------+------ w x . . | 4 | 2 2 0 | 3 * * * | 2 0 0 w . x . | 4 | 2 0 2 | * 6 * * | 1 1 0 . x x . | 4 | 0 2 2 | * * 6 * | 1 0 1 . . x3o | 3 | 0 0 3 | * * * 4 | 0 1 1 --------+----+--------+---------+------ w x x . | 8 | 4 4 4 | 2 2 2 0 | 3 * * cube variant w . x3o | 6 | 3 0 6 | 0 3 0 2 | * 2 * trip variant . x x3o | 6 | 0 3 6 | 0 0 3 2 | * * 2 trip (uniform)
© 2004-2025 | top of page |