Acronym tixip
Name truncated-hexateron prism
Circumradius sqrt(2) = 1.414214
Volume 79 sqrt(3)/160 = 0.855200
Face vector 60, 180, 235, 170, 69, 14
Confer
general polytopal classes:
Wythoffian polypeta   segmentopeta   lace simplices  

Incidence matrix according to Dynkin symbol

x x3x3o3o3o

. . . . . . | 60 |  1  1   2 |  1  4  4   6 |  4  6  6  4 |  6  4  4  1 | 4 1 1
------------+----+-----------+--------------+-------------+-------------+------
x . . . . . |  2 | 30  *   * |  1  4  0   0 |  4  6  0  0 |  6  4  0  0 | 4 1 0
. x . . . . |  2 |  * 30   * |  1  0  4   0 |  4  0  6  0 |  6  0  4  0 | 4 0 1
. . x . . . |  2 |  *  * 120 |  0  1  1   3 |  1  3  3  3 |  3  3  3  1 | 3 1 1
------------+----+-----------+--------------+-------------+-------------+------
x x . . . . |  4 |  2  2   0 | 15  *  *   *   4  0  0  0 |  6  0  0  0 | 4 0 0
x . x . . . |  4 |  2  0   2 |  * 60  *   * |  1  3  0  0 |  3  3  0  0 | 3 1 0
. x3x . . . |  6 |  0  3   3 |  *  * 40   * |  1  0  3  0 |  3  0  3  0 | 3 0 1
. . x3o . . |  3 |  0  0   3 |  *  *  * 120 |  0  1  1  2 |  1  2  2  1 | 2 1 1
------------+----+-----------+--------------+-------------+-------------+------
x x3x . . .  12 |  6  6   6 |  3  3  2   0 | 20  *  *  * |  3  0  0  0 | 3 0 0
x . x3o . .   6 |  3  0   6 |  0  3  0   2 |  * 60  *  * |  1  2  0  0 | 2 1 0
. x3x3o . .  12 |  0  6  12 |  0  0  4   4 |  *  * 30  * |  1  0  2  0 | 2 0 1
. . x3o3o .   4 |  0  0   6 |  0  0  0   4 |  *  *  * 60 |  0  1  1  1 | 1 1 1
------------+----+-----------+--------------+-------------+-------------+------
x x3x3o . .  24 | 12 12  24 |  6 12  8   8 |  4  4  2  0 | 15  *  *  * | 2 0 0
x . x3o3o .   8 |  4  0  12 |  0  6  0   8 |  0  4  0  2 |  * 30  *  * | 1 1 0
. x3x3o3o .  20 |  0 10  30 |  0  0 10  20 |  0  0  5  5 |  *  * 12  * | 1 0 1
. . x3o3o3o   5 |  0  0  10 |  0  0  0  10 |  0  0  0  5 |  *  *  * 12 | 0 1 1
------------+----+-----------+--------------+-------------+-------------+------
x x3x3o3o .  40 | 20 20  60 | 10 30 20  40 | 10 20 10 10 |  5  5  2  0 | 6 * *
x . x3o3o3o  10 |  5  0  20 |  0 10  0  20 |  0 10  0 10 |  0  5  0  2 | * 6 *
. x3x3o3o3o  30 |  0 15  60 |  0  0 20  60 |  0  0 15 30 |  0  0  6  6 | * * 2

xx3xx3oo3oo3oo&#x   → height = 1
(tix || tix)

o.3o.3o.3o.3o.    | 30  * |  1  4  1  0  0 |  4  6  1  4  0  0 |  6  4  4  6  0  0 | 4 1  6  4 0 0 | 1 4 1 0
.o3.o3.o3.o3.o    |  * 30 |  0  0  1  1  4 |  0  0  1  4  4  6 |  0  0  4  6  6  4 | 0 0  6  4 4 1 | 0 4 1 1
------------------+-------+----------------+-------------------+-------------------+---------------+--------
x. .. .. .. ..    |  2  0 | 15  *  *  *  * |  4  0  1  0  0  0 |  6  0  4  0  0  0 | 4 0  6  0 0 0 | 1 4 0 0
.. x. .. .. ..    |  2  0 |  * 60  *  *  * |  1  3  0  1  0  0 |  3  3  1  3  0  0 | 3 1  3  3 0 0 | 1 3 1 0
oo3oo3oo3oo3oo&#x |  1  1 |  *  * 30  *  * |  0  0  1  4  0  0 |  0  0  4  6  0  0 | 0 0  6  4 0 0 | 0 4 1 0
.x .. .. .. ..    |  0  2 |  *  *  * 15  * |  0  0  1  0  4  0 |  0  0  4  0  6  0 | 0 0  6  0 4 0 | 0 4 0 1
.. .x .. .. ..    |  0  2 |  *  *  *  * 60 |  0  0  0  1  1  3 |  0  0  1  3  3  3 | 0 0  3  3 3 1 | 0 3 1 1
------------------+-------+----------------+-------------------+-------------------+---------------+--------
x.3x. .. .. ..    |  6  0 |  3  3  0  0  0 | 20  *  *  *  *  * |  3  0  1  0  0  0 | 3 0  3  0 0 0 | 1 3 0 0
.. x.3o. .. ..    |  3  0 |  0  3  0  0  0 |  * 60  *  *  *  * |  1  2  0  1  0  0 | 2 1  1  2 0 0 | 1 2 1 0
xx .. .. .. ..&#x |  2  2 |  1  0  2  1  0 |  *  * 15  *  *  *   0  0  4  0  0  0 | 0 0  6  0 0 0 | 0 4 0 0
.. xx .. .. ..&#x |  2  2 |  0  1  2  0  1 |  *  *  * 60  *  * |  0  0  1  3  0  0 | 0 0  3  3 0 0 | 0 3 1 0
.x3.x .. .. ..    |  0  6 |  0  0  0  3  3 |  *  *  *  * 20  * |  0  0  1  0  3  0 | 0 0  3  0 3 0 | 0 3 0 1
.. .x3.o .. ..    |  0  3 |  0  0  0  0  3 |  *  *  *  *  * 60 |  0  0  0  1  1  2 | 0 0  1  2 2 1 | 0 2 1 1
------------------+-------+----------------+-------------------+-------------------+---------------+--------
x.3x.3o. .. ..     12  0 |  6 12  0  0  0 |  4  4  0  0  0  0 | 15  *  *  *  *  * | 2 0  1  0 0 0 | 1 2 0 0
.. x.3o.3o. ..      4  0 |  0  6  0  0  0 |  0  4  0  0  0  0 |  * 30  *  *  *  * | 1 1  0  1 0 0 | 1 1 1 0
xx3xx .. .. ..&#x   6  6 |  3  3  6  3  3 |  1  0  3  3  1  0 |  *  * 20  *  *  * | 0 0  3  0 0 0 | 0 3 0 0
.. xx3oo .. ..&#x   3  3 |  0  3  3  0  3 |  0  1  0  3  0  1 |  *  *  * 60  *  * | 0 0  1  2 0 0 | 0 2 1 0
.x3.x3.o .. ..      0 12 |  0  0  0  6 12 |  0  0  0  0  4  4 |  *  *  *  * 15  * | 0 0  1  0 2 0 | 0 2 0 1
.. .x3.o3.o ..      0  4 |  0  0  0  0  6 |  0  0  0  0  0  4 |  *  *  *  *  * 30 | 0 0  0  1 1 1 | 0 1 1 1
------------------+-------+----------------+-------------------+-------------------+---------------+--------
x.3x.3o.3o. ..     20  0 | 10 30  0  0  0 | 10 20  0  0  0  0 |  5  5  0  0  0  0 | 6 *  *  * * * | 1 1 0 0
.. x.3o.3o.3o.      5  0 |  0 10  0  0  0 |  0 10  0  0  0  0 |  0  5  0  0  0  0 | * 6  *  * * * | 1 0 1 0
xx3xx3oo .. ..&#x  12 12 |  6 12 12  6 12 |  4  4  6 12  4  4 |  1  0  4  4  1  0 | * * 15  * * * | 0 2 0 0
.. xx3oo3oo ..&#x   4  4 |  0  6  4  0  6 |  0  4  0  6  0  4 |  0  1  0  4  0  1 | * *  * 30 * * | 0 1 1 0
.x3.x3.o3.o ..      0 20 |  0  0  0 10 30 |  0  0  0  0 10 20 |  0  0  0  0  5  5 | * *  *  * 6 * | 0 1 0 1
.. .x3.o3.o3.o      0  5 |  0  0  0  0 10 |  0  0  0  0  0 10 |  0  0  0  0  0  5 | * *  *  * * 6 | 0 0 1 1
------------------+-------+----------------+-------------------+-------------------+---------------+--------
x.3x.3o.3o.3o.     30  0 | 15 60  0  0  0 | 20 60  0  0  0  0 | 15 30  0  0  0  0 | 6 6  0  0 0 0 | 1 * * *
xx3xx3oo3oo ..&#x  20 20 | 10 30 20 10 30 | 10 20 10 30 10 20 |  5  5 10 20  5  5 | 1 0  5  5 1 0 | * 6 * *
.. xx3oo3oo3oo&#x   5  5 |  0 10  5  0 10 |  0 10  0 10  0 10 |  0  5  0 10  0  5 | 0 1  0  5 0 1 | * * 6 *
.x3.x3.o3.o3.o      0 30 |  0  0  0 15 60 |  0  0  0  0 20 60 |  0  0  0  0 15 30 | 0 0  0  0 6 6 | * * * 1

© 2004-2025
top of page