Acronym sridatid, K-4.159 Name small rhombicosidodecahedron atop truncated dodecahedron,small-rhombicosidodecahedral cap of small rhombated hecatonicosachoron Segmentochoron display Circumradius sqrt[23+10 sqrt(5)] = 6.735034 General of army (is itself convex) Colonel of regiment (is itself locally convex) Dihedral angles at {3} between oct and trip:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756° at {4} between pecu and trip:   arccos(-sqrt[(3+sqrt(5))/6]) = 159.094843° at {4} between srid and trip:   arccos(-sqrt[(3+sqrt(5))/6]) = 159.094843° at {3} between oct and pecu:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {3} between oct and srid:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {5} between pecu and srid:   144° at {10} between pecu and tid:   36° at {3} between oct and tid:   arccos(sqrt[7+3 sqrt(5)]/4) = 22.238756° Confer uniform relative: srahi   general polytopal classes: segmentochora Externallinks

Incidence matrix according to Dynkin symbol

```xo3ox5xx&#x   → height = (sqrt(5)-1)/4 = 0.309017
(srid || tid)

o.3o.5o.    | 60  * |  2  2   2  0  0 |  1  2  1  2  1  2  0  0 | 1  1  2  1 0
.o3.o5.o    |  * 60 |  0  0   2  2  1 |  0  0  0  1  2  2  1  2 | 0  1  1  2 1
------------+-------+-----------------+-------------------------+-------------
x. .. ..    |  2  0 | 60  *   *  *  * |  1  1  0  1  0  0  0  0 | 1  1  1  0 0
.. .. x.    |  2  0 |  * 60   *  *  * |  0  1  1  0  0  1  0  0 | 1  0  1  1 0
oo3oo5oo&#x |  1  1 |  *  * 120  *  * |  0  0  0  1  1  1  0  0 | 0  1  1  1 0
.. .x ..    |  0  2 |  *  *   * 60  * |  0  0  0  0  1  0  1  1 | 0  1  0  1 1
.. .. .x    |  0  2 |  *  *   *  * 30 |  0  0  0  0  0  2  0  2 | 0  0  1  2 1
------------+-------+-----------------+-------------------------+-------------
x.3o. ..    |  3  0 |  3  0   0  0  0 | 20  *  *  *  *  *  *  * | 1  1  0  0 0
x. .. x.    |  4  0 |  2  2   0  0  0 |  * 30  *  *  *  *  *  * | 1  0  1  0 0
.. o.5x.    |  5  0 |  0  5   0  0  0 |  *  * 12  *  *  *  *  * | 1  0  0  1 0
xo .. ..&#x |  2  1 |  1  0   2  0  0 |  *  *  * 60  *  *  *  * | 0  1  1  0 0
.. ox ..&#x |  1  2 |  0  0   2  1  0 |  *  *  *  * 60  *  *  * | 0  1  0  1 0
.. .. xx&#x |  2  2 |  0  1   2  0  1 |  *  *  *  *  * 60  *  * | 0  0  1  1 0
.o3.x ..    |  0  3 |  0  0   0  3  0 |  *  *  *  *  *  * 20  * | 0  1  0  0 1
.. .x5.x    |  0 10 |  0  0   0  5  5 |  *  *  *  *  *  *  * 12 | 0  0  0  1 1
------------+-------+-----------------+-------------------------+-------------
x.3o.5x.    ♦ 60  0 | 60 60   0  0  0 | 20 30 12  0  0  0  0  0 | 1  *  *  * *
xo3ox ..&#x ♦  3  3 |  3  0   6  3  0 |  1  0  0  3  3  0  1  0 | * 20  *  * *
xo .. xx&#x ♦  4  2 |  2  2   4  0  1 |  0  1  0  2  0  2  0  0 | *  * 30  * *
.. ox5xx&#x ♦  5 10 |  0  5  10  5  5 |  0  0  1  0  5  5  0  1 | *  *  * 12 *
.o3.x5.x    ♦  0 60 |  0  0   0 60 30 |  0  0  0  0  0  0 20 12 | *  *  *  * 1
```