Acronym | thorahbit |
Name | tomohexagonal-rhombitrihexagonal duoprismatic tetracomb |
Incidence matrix according to Dynkin symbol
x3o6x o3x6x (N → ∞) . . . . . . | 36N | 2 2 2 1 | 1 2 4 2 1 4 2 1 2 | 2 1 4 2 2 4 2 1 2 4 | 1 2 2 4 1 2 ------------+-----+-----------------+-----------------------------------+-----------------------------------+----------------- x . . . . . | 2 | 36N * * * | 1 1 2 1 0 0 0 0 0 | 2 1 2 1 1 2 0 0 0 0 | 1 2 1 2 0 0 . . x . . . | 2 | * 36N * * | 0 1 0 0 1 2 1 0 0 | 0 0 2 1 0 0 2 1 1 2 | 0 0 1 2 1 2 . . . . x . | 2 | * * 36N * | 0 0 2 0 0 2 0 1 1 | 1 0 2 0 2 2 1 0 2 2 | 1 1 2 2 1 1 . . . . . x | 2 | * * * 18N | 0 0 0 2 0 0 2 0 2 | 0 1 0 2 0 4 0 1 0 4 | 0 2 0 4 0 2 ------------+-----+-----------------+-----------------------------------+-----------------------------------+----------------- x3o . . . . | 3 | 3 0 0 0 | 12N * * * * * * * * | 2 1 0 0 0 0 0 0 0 0 | 1 2 0 0 0 0 x . x . . . | 4 | 2 2 0 0 | * 18N * * * * * * * | 0 0 2 1 0 0 0 0 0 0 | 0 0 1 2 0 0 x . . . x . | 4 | 2 0 2 0 | * * 36N * * * * * * | 1 0 1 0 1 1 0 0 0 0 | 1 1 1 1 0 0 x . . . . x | 4 | 2 0 0 2 | * * * 18N * * * * * | 0 1 0 1 0 2 0 0 0 0 | 0 2 0 2 0 0 . o6x . . . | 6 | 0 6 0 0 | * * * * 6N * * * * | 0 0 0 0 0 0 2 1 0 0 | 0 0 0 0 1 2 . . x . x . | 4 | 0 2 2 0 | * * * * * 36N * * * | 0 0 1 0 0 0 1 0 1 1 | 0 0 1 1 1 1 . . x . . x | 4 | 0 2 0 2 | * * * * * * 18N * * | 0 0 0 1 0 0 0 1 0 2 | 0 0 0 2 0 2 . . . o3x . | 3 | 0 0 3 0 | * * * * * * * 12N * | 0 0 0 0 2 0 0 0 2 0 | 1 0 2 0 1 0 . . . . x6x | 12 | 0 0 6 6 | * * * * * * * * 6N | 0 0 0 0 0 2 0 0 0 2 | 0 1 0 2 0 1 ------------+-----+-----------------+-----------------------------------+-----------------------------------+----------------- x3o . . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 0 0 | 12N * * * * * * * * * | 1 1 0 0 0 0 x3o . . . x ♦ 6 | 6 0 0 3 | 2 0 0 3 0 0 0 0 0 | * 6N * * * * * * * * | 0 2 0 0 0 0 x . x . x . ♦ 8 | 4 4 4 0 | 0 2 2 0 0 2 0 0 0 | * * 18N * * * * * * * | 0 0 1 1 0 0 x . x . . x ♦ 8 | 4 4 0 4 | 0 2 0 2 0 0 2 0 0 | * * * 9N * * * * * * | 0 0 0 2 0 0 x . . o3x . ♦ 6 | 3 0 6 0 | 0 0 3 0 0 0 0 2 0 | * * * * 12N * * * * * | 1 0 1 0 0 0 x . . . x6x ♦ 24 | 12 0 12 12 | 0 0 6 6 0 0 0 0 2 | * * * * * 6N * * * * | 0 1 0 1 0 0 . o6x . x . ♦ 12 | 0 12 6 0 | 0 0 0 0 2 6 0 0 0 | * * * * * * 6N * * * | 0 0 0 0 1 1 . o6x . . x ♦ 12 | 0 12 0 6 | 0 0 0 0 2 0 6 0 0 | * * * * * * * 3N * * | 0 0 0 0 0 2 . . x o3x . ♦ 6 | 0 3 6 0 | 0 0 0 0 0 3 0 2 0 | * * * * * * * * 12N * | 0 0 1 0 1 0 . . x . x6x ♦ 24 | 0 12 12 12 | 0 0 0 0 0 6 6 0 2 | * * * * * * * * * 6N | 0 0 0 1 0 1 ------------+-----+-----------------+-----------------------------------+-----------------------------------+----------------- x3o . o3x . ♦ 9 | 9 0 9 0 | 3 0 9 0 0 0 0 3 0 | 3 0 0 0 3 0 0 0 0 0 | 4N * * * * * x3o . . x6x ♦ 36 | 36 0 18 18 | 12 0 18 18 0 0 0 0 3 | 6 6 0 0 0 3 0 0 0 0 | * 2N * * * * x . x o3x . ♦ 12 | 6 6 12 0 | 0 3 6 0 0 6 0 4 0 | 0 0 3 0 2 0 0 0 2 0 | * * 6N * * * x . x . x6x ♦ 48 | 24 24 24 24 | 0 12 12 12 0 12 12 0 4 | 0 0 6 6 0 2 0 0 0 2 | * * * 3N * * . o6x o3x . ♦ 18 | 0 18 18 0 | 0 0 0 0 3 18 0 6 0 | 0 0 0 0 0 0 3 0 6 0 | * * * * 2N * . o6x . x6x ♦ 72 | 0 72 36 36 | 0 0 0 0 12 36 36 0 6 | 0 0 0 0 0 0 6 6 0 6 | * * * * * N
© 2004-2024 | top of page |