Acronym hitwadip Name hexagon - dodecagon duoprism Circumradius sqrt[3+sqrt(3)] = 2.175328 General of army (is itself convex) Colonel of regiment (is itself locally convex) Dihedral angles at {6} between hip and hip:   150° at {12} between twip and twip:   120° at {4} between hip and twip:   90° Confer general duoprisms: n,m-dip   2n,m-dip   2n,2m-dip   6,n-dip   12,n-dip

Incidence matrix according to Dynkin symbol

```x6o x12o

. . .  . | 72 |  2  2 |  1  4 1 |  2 2
---------+----+-------+---------+-----
x . .  . |  2 | 72  * |  1  2 0 |  2 1
. . x  . |  2 |  * 72 |  0  2 1 |  1 2
---------+----+-------+---------+-----
x6o .  . |  6 |  6  0 | 12  * * |  2 0
x . x  . |  4 |  2  2 |  * 72 * |  1 1
. . x12o | 12 |  0 12 |  *  * 6 |  0 2
---------+----+-------+---------+-----
x6o x  . ♦ 12 | 12  6 |  2  6 0 | 12 *
x . x12o ♦ 24 | 12 24 |  0 12 2 |  * 6
```

```x6o x12/11o

. . .     . | 72 |  2  2 |  1  4 1 |  2 2
------------+----+-------+---------+-----
x . .     . |  2 | 72  * |  1  2 0 |  2 1
. . x     . |  2 |  * 72 |  0  2 1 |  1 2
------------+----+-------+---------+-----
x6o .     . |  6 |  6  0 | 12  * * |  2 0
x . x     . |  4 |  2  2 |  * 72 * |  1 1
. . x12/11o | 12 |  0 12 |  *  * 6 |  0 2
------------+----+-------+---------+-----
x6o x     . ♦ 12 | 12  6 |  2  6 0 | 12 *
x . x12/11o ♦ 24 | 12 24 |  0 12 2 |  * 6
```

```x6/5o x12o

.   . .  . | 72 |  2  2 |  1  4 1 |  2 2
-----------+----+-------+---------+-----
x   . .  . |  2 | 72  * |  1  2 0 |  2 1
.   . x  . |  2 |  * 72 |  0  2 1 |  1 2
-----------+----+-------+---------+-----
x6/5o .  . |  6 |  6  0 | 12  * * |  2 0
x   . x  . |  4 |  2  2 |  * 72 * |  1 1
.   . x12o | 12 |  0 12 |  *  * 6 |  0 2
-----------+----+-------+---------+-----
x6/5o x  . ♦ 12 | 12  6 |  2  6 0 | 12 *
x   . x12o ♦ 24 | 12 24 |  0 12 2 |  * 6
```

```x6/5o x12/11o

.   . .     . | 72 |  2  2 |  1  4 1 |  2 2
--------------+----+-------+---------+-----
x   . .     . |  2 | 72  * |  1  2 0 |  2 1
.   . x     . |  2 |  * 72 |  0  2 1 |  1 2
--------------+----+-------+---------+-----
x6/5o .     . |  6 |  6  0 | 12  * * |  2 0
x   . x     . |  4 |  2  2 |  * 72 * |  1 1
.   . x12/11o | 12 |  0 12 |  *  * 6 |  0 2
--------------+----+-------+---------+-----
x6/5o x     . ♦ 12 | 12  6 |  2  6 0 | 12 *
x   . x12/11o ♦ 24 | 12 24 |  0 12 2 |  * 6
```

```x3x x12o

. . .  . | 72 |  1  1  2 |  1  2  2 1 |  2 1 1
---------+----+----------+------------+-------
x . .  . |  2 | 36  *  * |  1  2  0 0 |  2 1 0
. x .  . |  2 |  * 36  * |  1  0  2 0 |  2 0 1
. . x  . |  2 |  *  * 72 |  0  1  1 1 |  1 1 1
---------+----+----------+------------+-------
x3x .  . |  6 |  3  3  0 | 12  *  * * |  2 0 0
x . x  . |  4 |  2  0  2 |  * 36  * * |  1 1 0
. x x  . |  4 |  0  2  2 |  *  * 36 * |  1 0 1
. . x12o | 12 |  0  0 12 |  *  *  * 6 |  0 1 1
---------+----+----------+------------+-------
x3x x  . ♦ 12 |  6  6  6 |  2  3  3 0 | 12 * *
x . x12o ♦ 24 | 12  0 24 |  0 12  0 2 |  * 3 *
. x x12o ♦ 24 |  0 12 24 |  0  0 12 2 |  * * 3
```

```x3x x12/11o

. . .     . | 72 |  1  1  2 |  1  2  2 1 |  2 1 1
------------+----+----------+------------+-------
x . .     . |  2 | 36  *  * |  1  2  0 0 |  2 1 0
. x .     . |  2 |  * 36  * |  1  0  2 0 |  2 0 1
. . x     . |  2 |  *  * 72 |  0  1  1 1 |  1 1 1
------------+----+----------+------------+-------
x3x .     . |  6 |  3  3  0 | 12  *  * * |  2 0 0
x . x     . |  4 |  2  0  2 |  * 36  * * |  1 1 0
. x x     . |  4 |  0  2  2 |  *  * 36 * |  1 0 1
. . x12/11o | 12 |  0  0 12 |  *  *  * 6 |  0 1 1
------------+----+----------+------------+-------
x3x x     . ♦ 12 |  6  6  6 |  2  3  3 0 | 12 * *
x . x12/11o ♦ 24 | 12  0 24 |  0 12  0 2 |  * 3 *
. x x12/11o ♦ 24 |  0 12 24 |  0  0 12 2 |  * * 3
```

```x6o x6x

. . . . | 72 |  2  1  1 |  1  2  2 1 | 1 1 2
--------+----+----------+------------+------
x . . . |  2 | 72  *  * |  1  1  1 0 | 1 1 1
. . x . |  2 |  * 36  * |  0  2  0 1 | 1 0 2
. . . x |  2 |  *  * 36 |  0  0  2 1 | 0 1 2
--------+----+----------+------------+------
x6o . . |  6 |  6  0  0 | 12  *  * * | 1 1 0
x . x . |  4 |  2  2  0 |  * 36  * * | 1 0 1
x . . x |  4 |  2  0  2 |  *  * 36 * | 0 1 1
. . x6x | 12 |  0  6  6 |  *  *  * 6 | 0 0 2
--------+----+----------+------------+------
x6o x . ♦ 12 | 12  6  0 |  2  6  0 0 | 6 * *
x6o . x ♦ 12 | 12  0  6 |  2  0  6 0 | * 6 *
x . x6x ♦ 24 | 12 12 12 |  0  6  6 2 | * * 6
```

```x6/5o x6x

.   . . . | 72 |  2  1  1 |  1  2  2 1 | 1 1 2
----------+----+----------+------------+------
x   . . . |  2 | 72  *  * |  1  1  1 0 | 1 1 1
.   . x . |  2 |  * 36  * |  0  2  0 1 | 1 0 2
.   . . x |  2 |  *  * 36 |  0  0  2 1 | 0 1 2
----------+----+----------+------------+------
x6/5o . . |  6 |  6  0  0 | 12  *  * * | 1 1 0
x   . x . |  4 |  2  2  0 |  * 36  * * | 1 0 1
x   . . x |  4 |  2  0  2 |  *  * 36 * | 0 1 1
.   . x6x | 12 |  0  6  6 |  *  *  * 6 | 0 0 2
----------+----+----------+------------+------
x6/5o x . ♦ 12 | 12  6  0 |  2  6  0 0 | 6 * *
x6/5o . x ♦ 12 | 12  0  6 |  2  0  6 0 | * 6 *
x   . x6x ♦ 24 | 12 12 12 |  0  6  6 2 | * * 6
```

```x3x x6x

. . . . | 72 |  1  1  1  1 |  1  1  1  1  1 1 | 1 1 1 1
--------+----+-------------+------------------+--------
x . . . |  2 | 36  *  *  * |  1  1  1  0  0 0 | 1 1 1 0
. x . . |  2 |  * 36  *  * |  1  0  0  1  1 0 | 1 1 0 1
. . x . |  2 |  *  * 36  * |  0  1  0  1  0 1 | 1 0 1 1
. . . x |  2 |  *  *  * 36 |  0  0  1  0  1 1 | 0 1 1 1
--------+----+-------------+------------------+--------
x3x . . |  6 |  3  3  0  0 | 12  *  *  *  * * | 1 1 0 0
x . x . |  4 |  2  0  2  0 |  * 18  *  *  * * | 1 0 1 0
x . . x |  4 |  2  0  0  2 |  *  * 18  *  * * | 0 1 1 0
. x x . |  4 |  0  2  2  0 |  *  *  * 18  * * | 1 0 0 1
. x . x |  4 |  0  2  0  2 |  *  *  *  * 18 * | 0 1 0 1
. . x6x | 12 |  0  0  6  6 |  *  *  *  *  * 6 | 0 0 1 1
--------+----+-------------+------------------+--------
x3x x . ♦ 12 |  6  6  6  0 |  2  3  0  3  0 0 | 6 * * *
x3x . x ♦ 12 |  6  6  0  6 |  2  0  3  0  3 0 | * 6 * *
x . x6x ♦ 24 | 12  0 12 12 |  0  6  6  0  0 2 | * * 3 *
. x x6x ♦ 24 |  0 12 12 12 |  0  0  0  6  6 2 | * * * 3
```