Acronym | hitwadip |
Name | hexagon - dodecagon duoprism |
Circumradius | sqrt[3+sqrt(3)] = 2.175328 |
General of army | (is itself convex) |
Colonel of regiment | (is itself locally convex) |
Dihedral angles | |
Face vector | 72, 144, 90, 18 |
Confer |
Incidence matrix according to Dynkin symbol
x6o x12o . . . . | 72 | 2 2 | 1 4 1 | 2 2 ---------+----+-------+---------+----- x . . . | 2 | 72 * | 1 2 0 | 2 1 . . x . | 2 | * 72 | 0 2 1 | 1 2 ---------+----+-------+---------+----- x6o . . | 6 | 6 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 72 * | 1 1 . . x12o | 12 | 0 12 | * * 6 | 0 2 ---------+----+-------+---------+----- x6o x . ♦ 12 | 12 6 | 2 6 0 | 12 * x . x12o ♦ 24 | 12 24 | 0 12 2 | * 6
x6o x12/11o . . . . | 72 | 2 2 | 1 4 1 | 2 2 ------------+----+-------+---------+----- x . . . | 2 | 72 * | 1 2 0 | 2 1 . . x . | 2 | * 72 | 0 2 1 | 1 2 ------------+----+-------+---------+----- x6o . . | 6 | 6 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 72 * | 1 1 . . x12/11o | 12 | 0 12 | * * 6 | 0 2 ------------+----+-------+---------+----- x6o x . ♦ 12 | 12 6 | 2 6 0 | 12 * x . x12/11o ♦ 24 | 12 24 | 0 12 2 | * 6
x6/5o x12o . . . . | 72 | 2 2 | 1 4 1 | 2 2 -----------+----+-------+---------+----- x . . . | 2 | 72 * | 1 2 0 | 2 1 . . x . | 2 | * 72 | 0 2 1 | 1 2 -----------+----+-------+---------+----- x6/5o . . | 6 | 6 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 72 * | 1 1 . . x12o | 12 | 0 12 | * * 6 | 0 2 -----------+----+-------+---------+----- x6/5o x . ♦ 12 | 12 6 | 2 6 0 | 12 * x . x12o ♦ 24 | 12 24 | 0 12 2 | * 6
x6/5o x12/11o . . . . | 72 | 2 2 | 1 4 1 | 2 2 --------------+----+-------+---------+----- x . . . | 2 | 72 * | 1 2 0 | 2 1 . . x . | 2 | * 72 | 0 2 1 | 1 2 --------------+----+-------+---------+----- x6/5o . . | 6 | 6 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 72 * | 1 1 . . x12/11o | 12 | 0 12 | * * 6 | 0 2 --------------+----+-------+---------+----- x6/5o x . ♦ 12 | 12 6 | 2 6 0 | 12 * x . x12/11o ♦ 24 | 12 24 | 0 12 2 | * 6
x3x x12o . . . . | 72 | 1 1 2 | 1 2 2 1 | 2 1 1 ---------+----+----------+------------+------- x . . . | 2 | 36 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 36 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 72 | 0 1 1 1 | 1 1 1 ---------+----+----------+------------+------- x3x . . | 6 | 3 3 0 | 12 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 36 * * | 1 1 0 . x x . | 4 | 0 2 2 | * * 36 * | 1 0 1 . . x12o | 12 | 0 0 12 | * * * 6 | 0 1 1 ---------+----+----------+------------+------- x3x x . ♦ 12 | 6 6 6 | 2 3 3 0 | 12 * * x . x12o ♦ 24 | 12 0 24 | 0 12 0 2 | * 3 * . x x12o ♦ 24 | 0 12 24 | 0 0 12 2 | * * 3
x3x x12/11o . . . . | 72 | 1 1 2 | 1 2 2 1 | 2 1 1 ------------+----+----------+------------+------- x . . . | 2 | 36 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 36 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 72 | 0 1 1 1 | 1 1 1 ------------+----+----------+------------+------- x3x . . | 6 | 3 3 0 | 12 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 36 * * | 1 1 0 . x x . | 4 | 0 2 2 | * * 36 * | 1 0 1 . . x12/11o | 12 | 0 0 12 | * * * 6 | 0 1 1 ------------+----+----------+------------+------- x3x x . ♦ 12 | 6 6 6 | 2 3 3 0 | 12 * * x . x12/11o ♦ 24 | 12 0 24 | 0 12 0 2 | * 3 * . x x12/11o ♦ 24 | 0 12 24 | 0 0 12 2 | * * 3
x6o x6x . . . . | 72 | 2 1 1 | 1 2 2 1 | 1 1 2 --------+----+----------+------------+------ x . . . | 2 | 72 * * | 1 1 1 0 | 1 1 1 . . x . | 2 | * 36 * | 0 2 0 1 | 1 0 2 . . . x | 2 | * * 36 | 0 0 2 1 | 0 1 2 --------+----+----------+------------+------ x6o . . | 6 | 6 0 0 | 12 * * * | 1 1 0 x . x . | 4 | 2 2 0 | * 36 * * | 1 0 1 x . . x | 4 | 2 0 2 | * * 36 * | 0 1 1 . . x6x | 12 | 0 6 6 | * * * 6 | 0 0 2 --------+----+----------+------------+------ x6o x . ♦ 12 | 12 6 0 | 2 6 0 0 | 6 * * x6o . x ♦ 12 | 12 0 6 | 2 0 6 0 | * 6 * x . x6x ♦ 24 | 12 12 12 | 0 6 6 2 | * * 6
x6/5o x6x . . . . | 72 | 2 1 1 | 1 2 2 1 | 1 1 2 ----------+----+----------+------------+------ x . . . | 2 | 72 * * | 1 1 1 0 | 1 1 1 . . x . | 2 | * 36 * | 0 2 0 1 | 1 0 2 . . . x | 2 | * * 36 | 0 0 2 1 | 0 1 2 ----------+----+----------+------------+------ x6/5o . . | 6 | 6 0 0 | 12 * * * | 1 1 0 x . x . | 4 | 2 2 0 | * 36 * * | 1 0 1 x . . x | 4 | 2 0 2 | * * 36 * | 0 1 1 . . x6x | 12 | 0 6 6 | * * * 6 | 0 0 2 ----------+----+----------+------------+------ x6/5o x . ♦ 12 | 12 6 0 | 2 6 0 0 | 6 * * x6/5o . x ♦ 12 | 12 0 6 | 2 0 6 0 | * 6 * x . x6x ♦ 24 | 12 12 12 | 0 6 6 2 | * * 6
x3x x6x . . . . | 72 | 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 --------+----+-------------+------------------+-------- x . . . | 2 | 36 * * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 36 * * | 1 0 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 36 * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * * 36 | 0 0 1 0 1 1 | 0 1 1 1 --------+----+-------------+------------------+-------- x3x . . | 6 | 3 3 0 0 | 12 * * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 0 | * 18 * * * * | 1 0 1 0 x . . x | 4 | 2 0 0 2 | * * 18 * * * | 0 1 1 0 . x x . | 4 | 0 2 2 0 | * * * 18 * * | 1 0 0 1 . x . x | 4 | 0 2 0 2 | * * * * 18 * | 0 1 0 1 . . x6x | 12 | 0 0 6 6 | * * * * * 6 | 0 0 1 1 --------+----+-------------+------------------+-------- x3x x . ♦ 12 | 6 6 6 0 | 2 3 0 3 0 0 | 6 * * * x3x . x ♦ 12 | 6 6 0 6 | 2 0 3 0 3 0 | * 6 * * x . x6x ♦ 24 | 12 0 12 12 | 0 6 6 0 0 2 | * * 3 * . x x6x ♦ 24 | 0 12 12 12 | 0 0 0 6 6 2 | * * * 3
© 2004-2025 | top of page |