Acronym titwadip Name triangle - dodecagon duoprism,dodecagon - twip wedge Circumradius sqrt[(7+3 sqrt(3))/3] = 2.016280 General of army (is itself convex) Colonel of regiment (is itself locally convex) Dihedral angles at {3} between trip and trip:   150° at {4} between trip and twip:   90° at {12} between twip and twip:   60° Confer general duoprisms: n,m-dip   2n,m-dip   3,n-dip   4,n-dip   12,n-dip   general polytopal classes: segmentochora Externallinks

Incidence matrix according to Dynkin symbol

```x3o x12o

. . .  . | 36 |  2  2 |  1  4 1 |  2 2
---------+----+-------+---------+-----
x . .  . |  2 | 36  * |  1  2 0 |  2 1
. . x  . |  2 |  * 36 |  0  2 1 |  1 2
---------+----+-------+---------+-----
x3o .  . |  3 |  3  0 | 12  * * |  2 0
x . x  . |  4 |  2  2 |  * 36 * |  1 1
. . x12o | 12 |  0 12 |  *  * 3 |  0 2
---------+----+-------+---------+-----
x3o x  . ♦  6 |  6  3 |  2  3 0 | 12 *
x . x12o ♦ 24 | 12 24 |  0 12 2 |  * 3
```

```x3o x6x

. . . . | 36 |  2  1  1 |  1  2  2 1 | 1 1 2
--------+----+----------+------------+------
x . . . |  2 | 36  *  * |  1  1  1 0 | 1 1 1
. . x . |  2 |  * 18  * |  0  2  0 1 | 1 0 2
. . . x |  2 |  *  * 18 |  0  0  2 1 | 0 1 2
--------+----+----------+------------+------
x3o . . |  3 |  3  0  0 | 12  *  * * | 1 1 0
x . x . |  4 |  2  2  0 |  * 18  * * | 1 0 1
x . . x |  4 |  2  0  2 |  *  * 18 * | 0 1 1
. . x6x | 12 |  0  6  6 |  *  *  * 3 | 0 0 2
--------+----+----------+------------+------
x3o x . ♦  6 |  6  3  0 |  2  3  0 0 | 6 * *
x3o . x ♦  6 |  6  0  3 |  2  0  3 0 | * 6 *
x . x6x ♦ 24 | 12 12 12 |  0  6  6 2 | * * 3
```

```x3o x12/11o

. . .     . | 36 |  2  2 |  1  4 1 |  2 2
------------+----+-------+---------+-----
x . .     . |  2 | 36  * |  1  2 0 |  2 1
. . x     . |  2 |  * 36 |  0  2 1 |  1 2
------------+----+-------+---------+-----
x3o .     . |  3 |  3  0 | 12  * * |  2 0
x . x     . |  4 |  2  2 |  * 36 * |  1 1
. . x12/11o | 12 |  0 12 |  *  * 3 |  0 2
------------+----+-------+---------+-----
x3o x     . ♦  6 |  6  3 |  2  3 0 | 12 *
x . x12/11o ♦ 24 | 12 24 |  0 12 2 |  * 3
```

```x3/2o x12o

.   . .  . | 36 |  2  2 |  1  4 1 |  2 2
-----------+----+-------+---------+-----
x   . .  . |  2 | 36  * |  1  2 0 |  2 1
.   . x  . |  2 |  * 36 |  0  2 1 |  1 2
-----------+----+-------+---------+-----
x3/2o .  . |  3 |  3  0 | 12  * * |  2 0
x   . x  . |  4 |  2  2 |  * 36 * |  1 1
.   . x12o | 12 |  0 12 |  *  * 3 |  0 2
-----------+----+-------+---------+-----
x3/2o x  . ♦  6 |  6  3 |  2  3 0 | 12 *
x   . x12o ♦ 24 | 12 24 |  0 12 2 |  * 3
```

```x3/2o x6x

.   . . . | 36 |  2  1  1 |  1  2  2 1 | 1 1 2
----------+----+----------+------------+------
x   . . . |  2 | 36  *  * |  1  1  1 0 | 1 1 1
.   . x . |  2 |  * 18  * |  0  2  0 1 | 1 0 2
.   . . x |  2 |  *  * 18 |  0  0  2 1 | 0 1 2
----------+----+----------+------------+------
x3/2o . . |  3 |  3  0  0 | 12  *  * * | 1 1 0
x   . x . |  4 |  2  2  0 |  * 18  * * | 1 0 1
x   . . x |  4 |  2  0  2 |  *  * 18 * | 0 1 1
.   . x6x | 12 |  0  6  6 |  *  *  * 3 | 0 0 2
----------+----+----------+------------+------
x3/2o x . ♦  6 |  6  3  0 |  2  3  0 0 | 6 * *
x3/2o . x ♦  6 |  6  0  3 |  2  0  3 0 | * 6 *
x   . x6x ♦ 24 | 12 12 12 |  0  6  6 2 | * * 3
```

```x3/2o x12/11o

.   . .     . | 36 |  2  2 |  1  4 1 |  2 2
--------------+----+-------+---------+-----
x   . .     . |  2 | 36  * |  1  2 0 |  2 1
.   . x     . |  2 |  * 36 |  0  2 1 |  1 2
--------------+----+-------+---------+-----
x3/2o .     . |  3 |  3  0 | 12  * * |  2 0
x   . x     . |  4 |  2  2 |  * 36 * |  1 1
.   . x12/11o | 12 |  0 12 |  *  * 3 |  0 2
--------------+----+-------+---------+-----
x3/2o x     . ♦  6 |  6  3 |  2  3 0 | 12 *
x   . x12/11o ♦ 24 | 12 24 |  0 12 2 |  * 3
```