Acronym | titwadip |
Name |
triangle - dodecagon duoprism, dodecagon - twip wedge |
Circumradius | sqrt[(7+3 sqrt(3))/3] = 2.016280 |
General of army | (is itself convex) |
Colonel of regiment | (is itself locally convex) |
Dihedral angles | |
Face vector | 36, 72, 51, 15 |
Confer | |
External links |
Incidence matrix according to Dynkin symbol
x3o x12o . . . . | 36 | 2 2 | 1 4 1 | 2 2 ---------+----+-------+---------+----- x . . . | 2 | 36 * | 1 2 0 | 2 1 . . x . | 2 | * 36 | 0 2 1 | 1 2 ---------+----+-------+---------+----- x3o . . | 3 | 3 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 36 * | 1 1 . . x12o | 12 | 0 12 | * * 3 | 0 2 ---------+----+-------+---------+----- x3o x . ♦ 6 | 6 3 | 2 3 0 | 12 * x . x12o ♦ 24 | 12 24 | 0 12 2 | * 3
x3o x6x . . . . | 36 | 2 1 1 | 1 2 2 1 | 1 1 2 --------+----+----------+------------+------ x . . . | 2 | 36 * * | 1 1 1 0 | 1 1 1 . . x . | 2 | * 18 * | 0 2 0 1 | 1 0 2 . . . x | 2 | * * 18 | 0 0 2 1 | 0 1 2 --------+----+----------+------------+------ x3o . . | 3 | 3 0 0 | 12 * * * | 1 1 0 x . x . | 4 | 2 2 0 | * 18 * * | 1 0 1 x . . x | 4 | 2 0 2 | * * 18 * | 0 1 1 . . x6x | 12 | 0 6 6 | * * * 3 | 0 0 2 --------+----+----------+------------+------ x3o x . ♦ 6 | 6 3 0 | 2 3 0 0 | 6 * * x3o . x ♦ 6 | 6 0 3 | 2 0 3 0 | * 6 * x . x6x ♦ 24 | 12 12 12 | 0 6 6 2 | * * 3
x3o x12/11o . . . . | 36 | 2 2 | 1 4 1 | 2 2 ------------+----+-------+---------+----- x . . . | 2 | 36 * | 1 2 0 | 2 1 . . x . | 2 | * 36 | 0 2 1 | 1 2 ------------+----+-------+---------+----- x3o . . | 3 | 3 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 36 * | 1 1 . . x12/11o | 12 | 0 12 | * * 3 | 0 2 ------------+----+-------+---------+----- x3o x . ♦ 6 | 6 3 | 2 3 0 | 12 * x . x12/11o ♦ 24 | 12 24 | 0 12 2 | * 3
x3/2o x12o . . . . | 36 | 2 2 | 1 4 1 | 2 2 -----------+----+-------+---------+----- x . . . | 2 | 36 * | 1 2 0 | 2 1 . . x . | 2 | * 36 | 0 2 1 | 1 2 -----------+----+-------+---------+----- x3/2o . . | 3 | 3 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 36 * | 1 1 . . x12o | 12 | 0 12 | * * 3 | 0 2 -----------+----+-------+---------+----- x3/2o x . ♦ 6 | 6 3 | 2 3 0 | 12 * x . x12o ♦ 24 | 12 24 | 0 12 2 | * 3
x3/2o x6x . . . . | 36 | 2 1 1 | 1 2 2 1 | 1 1 2 ----------+----+----------+------------+------ x . . . | 2 | 36 * * | 1 1 1 0 | 1 1 1 . . x . | 2 | * 18 * | 0 2 0 1 | 1 0 2 . . . x | 2 | * * 18 | 0 0 2 1 | 0 1 2 ----------+----+----------+------------+------ x3/2o . . | 3 | 3 0 0 | 12 * * * | 1 1 0 x . x . | 4 | 2 2 0 | * 18 * * | 1 0 1 x . . x | 4 | 2 0 2 | * * 18 * | 0 1 1 . . x6x | 12 | 0 6 6 | * * * 3 | 0 0 2 ----------+----+----------+------------+------ x3/2o x . ♦ 6 | 6 3 0 | 2 3 0 0 | 6 * * x3/2o . x ♦ 6 | 6 0 3 | 2 0 3 0 | * 6 * x . x6x ♦ 24 | 12 12 12 | 0 6 6 2 | * * 3
x3/2o x12/11o . . . . | 36 | 2 2 | 1 4 1 | 2 2 --------------+----+-------+---------+----- x . . . | 2 | 36 * | 1 2 0 | 2 1 . . x . | 2 | * 36 | 0 2 1 | 1 2 --------------+----+-------+---------+----- x3/2o . . | 3 | 3 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 36 * | 1 1 . . x12/11o | 12 | 0 12 | * * 3 | 0 2 --------------+----+-------+---------+----- x3/2o x . ♦ 6 | 6 3 | 2 3 0 | 12 * x . x12/11o ♦ 24 | 12 24 | 0 12 2 | * 3
© 2004-2025 | top of page |