Acronym thoot thibbit
Name tomohexagonal-omnitruncated-trihexagonal duoprismatic tetracomb

Incidence matrix according to Dynkin symbol

x3x6x o3x6x   (N → ∞)

. . . . . . | 72N |   1   1   1   2   1 |   1   1   2   1  1   2   1   2   1   1   2 |   2  1   2  1   1  2  2  1   1  2   1  2 |  1  2  1  2  1 2
------------+-----+---------------------+--------------------------------------------+------------------------------------------+-----------------
x . . . . . |   2 | 36N   *   *   *   * |   1   1   2   1  0   0   0   0   0   0   0 |   2  1   2  1   1  2  0  0   0  0   0  0 |  1  2  1  2  0 0
. x . . . . |   2 |   * 36N   *   *   * |   1   0   0   0  1   2   1   0   0   0   0 |   2  1   0  0   0  0  2  1   1  2   0  0 |  1  2  0  0  1 2
. . x . . . |   2 |   *   * 36N   *   * |   0   1   0   0  1   0   0   2   1   0   0 |   0  0   2  1   0  0  2  1   0  0   1  2 |  0  0  1  2  1 2
. . . . x . |   2 |   *   *   * 72N   * |   0   0   1   0  0   1   0   1   0   1   1 |   1  0   1  0   1  1  1  0   1  1   1  1 |  1  1  1  1  1 1
. . . . . x |   2 |   *   *   *   * 36N |   0   0   0   1  0   0   1   0   1   0   2 |   0  1   0  1   0  2  0  1   0  2   0  2 |  0  2  0  2  0 2
------------+-----+---------------------+--------------------------------------------+------------------------------------------+-----------------
x3x . . . . |   6 |   3   3   0   0   0 | 12N   *   *   *  *   *   *   *   *   *   * |   2  1   0  0   0  0  0  0   0  0   0  0 |  1  2  0  0  0 0
x . x . . . |   4 |   2   0   2   0   0 |   * 18N   *   *  *   *   *   *   *   *   * |   0  0   2  1   0  0  0  0   0  0   0  0 |  0  0  1  2  0 0
x . . . x . |   4 |   2   0   0   2   0 |   *   * 36N   *  *   *   *   *   *   *   * |   1  0   1  0   1  1  0  0   0  0   0  0 |  1  1  1  1  0 0
x . . . . x |   4 |   2   0   0   0   2 |   *   *   * 18N  *   *   *   *   *   *   * |   0  1   0  1   0  2  0  0   0  0   0  0 |  0  2  0  2  0 0
. x6x . . . |  12 |   0   6   6   0   0 |   *   *   *   * 6N   *   *   *   *   *   * |   0  0   0  0   0  0  2  1   0  0   0  0 |  0  0  0  0  1 2
. x . . x . |   4 |   0   2   0   2   0 |   *   *   *   *  * 36N   *   *   *   *   * |   1  0   0  0   0  0  1  0   1  1   0  0 |  1  1  0  0  1 1
. x . . . x |   4 |   0   2   0   0   2 |   *   *   *   *  *   * 18N   *   *   *   * |   0  1   0  0   0  0  0  1   0  2   0  0 |  0  2  0  0  0 2
. . x . x . |   4 |   0   0   2   2   0 |   *   *   *   *  *   *   * 36N   *   *   * |   0  0   1  0   0  0  1  0   0  0   1  1 |  0  0  1  1  1 1
. . x . . x |   4 |   0   0   2   0   2 |   *   *   *   *  *   *   *   * 18N   *   * |   0  0   0  1   0  0  0  1   0  0   0  2 |  0  0  0  2  0 2
. . . o3x . |   3 |   0   0   0   3   0 |   *   *   *   *  *   *   *   *   * 24N   * |   0  0   0  0   1  0  0  0   1  0   1  0 |  1  0  1  0  1 0
. . . . x6x |  12 |   0   0   0   6   6 |   *   *   *   *  *   *   *   *   *   * 12N |   0  0   0  0   0  1  0  0   0  1   0  1 |  0  1  0  1  0 1
------------+-----+---------------------+--------------------------------------------+------------------------------------------+-----------------
x3x . . x .   12 |   6   6   0   6   0 |   2   0   3   0  0   3   0   0   0   0   0 | 12N  *   *  *   *  *  *  *   *  *   *  * |  1  1  0  0  0 0
x3x . . . x   12 |   6   6   0   0   6 |   2   0   0   3  0   0   3   0   0   0   0 |   * 6N   *  *   *  *  *  *   *  *   *  * |  0  2  0  0  0 0
x . x . x .    8 |   4   0   4   4   0 |   0   2   2   0  0   0   0   2   0   0   0 |   *  * 18N  *   *  *  *  *   *  *   *  * |  0  0  1  1  0 0
x . x . . x    8 |   4   0   4   0   4 |   0   2   0   2  0   0   0   0   2   0   0 |   *  *   * 9N   *  *  *  *   *  *   *  * |  0  0  0  2  0 0
x . . o3x .    6 |   3   0   0   6   0 |   0   0   3   0  0   0   0   0   0   2   0 |   *  *   *  * 12N  *  *  *   *  *   *  * |  1  0  1  0  0 0
x . . . x6x   24 |  12   0   0  12  12 |   0   0   6   6  0   0   0   0   0   0   2 |   *  *   *  *   * 6N  *  *   *  *   *  * |  0  1  0  1  0 0
. x6x . x .   24 |   0  12  12  12   0 |   0   0   0   0  2   6   0   6   0   0   0 |   *  *   *  *   *  * 6N  *   *  *   *  * |  0  0  0  0  1 1
. x6x . . x   24 |   0  12  12   0  12 |   0   0   0   0  2   0   6   0   6   0   0 |   *  *   *  *   *  *  * 3N   *  *   *  * |  0  0  0  0  0 2
. x . o3x .    6 |   0   3   0   6   0 |   0   0   0   0  0   3   0   0   0   2   0 |   *  *   *  *   *  *  *  * 12N  *   *  * |  1  0  0  0  1 0
. x . . x6x   24 |   0  12   0  12  12 |   0   0   0   0  0   6   6   0   0   0   2 |   *  *   *  *   *  *  *  *   * 6N   *  * |  0  1  0  0  0 1
. . x o3x .    6 |   0   0   3   6   0 |   0   0   0   0  0   0   0   3   0   2   0 |   *  *   *  *   *  *  *  *   *  * 12N  * |  0  0  1  0  1 0
. . x . x6x   24 |   0   0  12  12  12 |   0   0   0   0  0   0   0   6   6   0   2 |   *  *   *  *   *  *  *  *   *  *   * 6N |  0  0  0  1  0 1
------------+-----+---------------------+--------------------------------------------+------------------------------------------+-----------------
x3x . o3x .   18 |   9   9   0  18   0 |   3   0   9   0  0   9   0   0   0   6   0 |   3  0   0  0   3  0  0  0   3  0   0  0 | 4N  *  *  *  * *
x3x . . x6x   72 |  36  36   0  36  36 |  12   0  18  18  0  18  18   0   0   0   6 |   6  6   0  0   0  3  0  0   0  3   0  0 |  * 2N  *  *  * *
x . x o3x .   12 |   6   0   6  12   0 |   0   3   6   0  0   0   0   6   0   4   0 |   0  0   3  0   2  0  0  0   0  0   2  0 |  *  * 6N  *  * *
x . x . x6x   48 |  24   0  24  24  24 |   0  12  12  12  0   0   0  12  12   0   4 |   0  0   6  6   0  2  0  0   0  0   0  2 |  *  *  * 3N  * *
. x6x o3x .   36 |   0  18  18  36   0 |   0   0   0   0  3  18   0  18   0  12   0 |   0  0   0  0   0  0  3  0   6  0   6  0 |  *  *  *  * 2N *
. x6x . x6x  144 |   0  72  72  72  72 |   0   0   0   0 12  36  36  36  36   0  12 |   0  0   0  0   0  0  6  6   0  6   0  6 |  *  *  *  *  * N

© 2004-2025
top of page