Acronym | twaddip |
Name | dodecagonal-dodecagonal duoprism |
Circumradius | 1+sqrt(3) = 2.732051 |
General of army | (is itself convex) |
Colonel of regiment | (is itself locally convex) |
Dihedral angles | |
Face vector | 144, 288, 168, 24 |
Confer | |
External links |
Incidence matrix according to Dynkin symbol
x12o x12o . . . . | 144 | 2 2 | 1 4 1 | 2 2 ----------+-----+---------+-----------+------ x . . . | 2 | 144 * | 1 2 0 | 2 1 . . x . | 2 | * 144 | 0 2 1 | 1 2 ----------+-----+---------+-----------+------ x12o . . | 12 | 12 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 144 * | 1 1 . . x12o | 12 | 0 12 | * * 12 | 0 2 ----------+-----+---------+-----------+------ x12o x . ♦ 24 | 24 12 | 2 12 0 | 12 * x . x12o ♦ 24 | 12 24 | 0 12 2 | * 12
or . . . . | 144 | 4 | 2 4 | 4 -------------+-----+-----+--------+--- x . . . & | 2 | 288 | 1 2 | 3 -------------+-----+-----+--------+--- x12o . . & | 12 | 12 | 24 * | 2 x . x . | 4 | 4 | * 144 | 2 -------------+-----+-----+--------+--- x12o x . & ♦ 24 | 36 | 2 12 | 24
x12o x12/11o . . . . | 144 | 2 2 | 1 4 1 | 2 2 -------------+-----+---------+-----------+------ x . . . | 2 | 144 * | 1 2 0 | 2 1 . . x . | 2 | * 144 | 0 2 1 | 1 2 -------------+-----+---------+-----------+------ x12o . . | 12 | 12 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 144 * | 1 1 . . x12/11o | 12 | 0 12 | * * 12 | 0 2 -------------+-----+---------+-----------+------ x12o x . ♦ 24 | 24 12 | 2 12 0 | 12 * x . x12/11o ♦ 24 | 12 24 | 0 12 2 | * 12
x12/11o x12/11o . . . . | 144 | 2 2 | 1 4 1 | 2 2 ----------------+-----+---------+-----------+------ x . . . | 2 | 144 * | 1 2 0 | 2 1 . . x . | 2 | * 144 | 0 2 1 | 1 2 ----------------+-----+---------+-----------+------ x12/11o . . | 12 | 12 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 144 * | 1 1 . . x12/11o | 12 | 0 12 | * * 12 | 0 2 ----------------+-----+---------+-----------+------ x12/11o x . ♦ 24 | 24 12 | 2 12 0 | 12 * x . x12/11o ♦ 24 | 12 24 | 0 12 2 | * 12
or . . . . | 144 | 4 | 2 4 | 4 -------------------+-----+-----+--------+--- x . . . & | 2 | 288 | 1 2 | 3 -------------------+-----+-----+--------+--- x12/11o . . & | 12 | 12 | 24 * | 2 x . x . | 4 | 4 | * 144 | 2 -------------------+-----+-----+--------+--- x12/11o x . & ♦ 24 | 36 | 2 12 | 24
x6x x12o . . . . | 144 | 1 1 2 | 1 2 2 1 | 2 1 1 ---------+-----+-----------+-------------+------- x . . . | 2 | 72 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 72 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 144 | 0 1 1 1 | 1 1 1 ---------+-----+-----------+-------------+------- x6x . . | 12 | 6 6 0 | 12 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 72 * * | 1 1 0 . x x . | 4 | 0 2 2 | * * 72 * | 1 0 1 . . x12o | 12 | 0 0 12 | * * * 12 | 0 1 1 ---------+-----+-----------+-------------+------- x6x x . ♦ 24 | 12 12 12 | 2 6 6 0 | 12 * * x . x12o ♦ 24 | 12 0 24 | 0 12 0 2 | * 6 * . x x12o ♦ 24 | 0 12 24 | 0 0 12 2 | * * 6
x6x x12/11o . . . . | 144 | 1 1 2 | 1 2 2 1 | 2 1 1 ------------+-----+-----------+-------------+------- x . . . | 2 | 72 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 72 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 144 | 0 1 1 1 | 1 1 1 ------------+-----+-----------+-------------+------- x6x . . | 12 | 6 6 0 | 12 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 72 * * | 1 1 0 . x x . | 4 | 0 2 2 | * * 72 * | 1 0 1 . . x12/11o | 12 | 0 0 12 | * * * 12 | 0 1 1 ------------+-----+-----------+-------------+------- x6x x . ♦ 24 | 12 12 12 | 2 6 6 0 | 12 * * x . x12/11o ♦ 24 | 12 0 24 | 0 12 0 2 | * 6 * . x x12/11o ♦ 24 | 0 12 24 | 0 0 12 2 | * * 6
x6x x6x . . . . | 144 | 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 --------+-----+-------------+-------------------+-------- x . . . | 2 | 72 * * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 72 * * | 1 0 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 72 * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * * 72 | 0 0 1 0 1 1 | 0 1 1 1 --------+-----+-------------+-------------------+-------- x6x . . | 12 | 6 6 0 0 | 12 * * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 0 | * 36 * * * * | 1 0 1 0 x . . x | 4 | 2 0 0 2 | * * 36 * * * | 0 1 1 0 . x x . | 4 | 0 2 2 0 | * * * 36 * * | 1 0 0 1 . x . x | 4 | 0 2 0 2 | * * * * 36 * | 0 1 0 1 . . x6x | 12 | 0 0 6 6 | * * * * * 12 | 0 0 1 1 --------+-----+-------------+-------------------+-------- x6x x . ♦ 24 | 12 12 12 0 | 2 6 0 6 0 0 | 6 * * * x6x . x ♦ 24 | 12 12 0 12 | 2 0 6 0 6 0 | * 6 * * x . x6x ♦ 24 | 12 0 12 12 | 0 6 6 0 0 2 | * * 6 * . x x6x ♦ 24 | 0 12 12 12 | 0 0 0 6 6 2 | * * * 6
© 2004-2024 | top of page |