Acronym twaddip
Name dodecagonal-dodecagonal duoprism
Circumradius 1+sqrt(3) = 2.732051
General of army (is itself convex)
Colonel of regiment (is itself locally convex)
Dihedral angles
Confer
general duoprisms:
n,n-dip   n,m-dip   2n,m-dip   2n,2m-dip   12,n-dip  
general polytopal classes:
noble polytopes  

Incidence matrix according to Dynkin symbol

x12o x12o

.  . .  . | 144 |   2   2 |  1   4  1 |  2  2
----------+-----+---------+-----------+------
x  . .  . |   2 | 144   * |  1   2  0 |  2  1
.  . x  . |   2 |   * 144 |  0   2  1 |  1  2
----------+-----+---------+-----------+------
x12o .  . |  12 |  12   0 | 12   *  * |  2  0
x  . x  . |   4 |   2   2 |  * 144  * |  1  1
.  . x12o |  12 |   0  12 |  *   * 12 |  0  2
----------+-----+---------+-----------+------
x12o x  .   24 |  24  12 |  2  12  0 | 12  *
x  . x12o   24 |  12  24 |  0  12  2 |  * 12
or
.  . .  .    | 144 |   4 |  2   4 |  4
-------------+-----+-----+--------+---
x  . .  .  & |   2 | 288 |  1   2 |  3
-------------+-----+-----+--------+---
x12o .  .  & |  12 |  12 | 24   * |  2
x  . x  .    |   4 |   4 |  * 144 |  2
-------------+-----+-----+--------+---
x12o x  .  &   24 |  36 |  2  12 | 24

x12o x12/11o

.  . .     . | 144 |   2   2 |  1   4  1 |  2  2
-------------+-----+---------+-----------+------
x  . .     . |   2 | 144   * |  1   2  0 |  2  1
.  . x     . |   2 |   * 144 |  0   2  1 |  1  2
-------------+-----+---------+-----------+------
x12o .     . |  12 |  12   0 | 12   *  * |  2  0
x  . x     . |   4 |   2   2 |  * 144  * |  1  1
.  . x12/11o |  12 |   0  12 |  *   * 12 |  0  2
-------------+-----+---------+-----------+------
x12o x     .   24 |  24  12 |  2  12  0 | 12  *
x  . x12/11o   24 |  12  24 |  0  12  2 |  * 12

x12/11o x12/11o

.     . .     . | 144 |   2   2 |  1   4  1 |  2  2
----------------+-----+---------+-----------+------
x     . .     . |   2 | 144   * |  1   2  0 |  2  1
.     . x     . |   2 |   * 144 |  0   2  1 |  1  2
----------------+-----+---------+-----------+------
x12/11o .     . |  12 |  12   0 | 12   *  * |  2  0
x     . x     . |   4 |   2   2 |  * 144  * |  1  1
.     . x12/11o |  12 |   0  12 |  *   * 12 |  0  2
----------------+-----+---------+-----------+------
x12/11o x     .   24 |  24  12 |  2  12  0 | 12  *
x     . x12/11o   24 |  12  24 |  0  12  2 |  * 12
or
.     . .     .    | 144 |   4 |  2   4 |  4
-------------------+-----+-----+--------+---
x     . .     .  & |   2 | 288 |  1   2 |  3
-------------------+-----+-----+--------+---
x12/11o .     .  & |  12 |  12 | 24   * |  2
x     . x     .    |   4 |   4 |  * 144 |  2
-------------------+-----+-----+--------+---
x12/11o x     .  &   24 |  36 |  2  12 | 24

x6x x12o

. . .  . | 144 |  1  1   2 |  1  2  2  1 |  2 1 1
---------+-----+-----------+-------------+-------
x . .  . |   2 | 72  *   * |  1  2  0  0 |  2 1 0
. x .  . |   2 |  * 72   * |  1  0  2  0 |  2 0 1
. . x  . |   2 |  *  * 144 |  0  1  1  1 |  1 1 1
---------+-----+-----------+-------------+-------
x6x .  . |  12 |  6  6   0 | 12  *  *  * |  2 0 0
x . x  . |   4 |  2  0   2 |  * 72  *  * |  1 1 0
. x x  . |   4 |  0  2   2 |  *  * 72  * |  1 0 1
. . x12o |  12 |  0  0  12 |  *  *  * 12 |  0 1 1
---------+-----+-----------+-------------+-------
x6x x  .   24 | 12 12  12 |  2  6  6  0 | 12 * *
x . x12o   24 | 12  0  24 |  0 12  0  2 |  * 6 *
. x x12o   24 |  0 12  24 |  0  0 12  2 |  * * 6

x6x x12/11o

. . .     . | 144 |  1  1   2 |  1  2  2  1 |  2 1 1
------------+-----+-----------+-------------+-------
x . .     . |   2 | 72  *   * |  1  2  0  0 |  2 1 0
. x .     . |   2 |  * 72   * |  1  0  2  0 |  2 0 1
. . x     . |   2 |  *  * 144 |  0  1  1  1 |  1 1 1
------------+-----+-----------+-------------+-------
x6x .     . |  12 |  6  6   0 | 12  *  *  * |  2 0 0
x . x     . |   4 |  2  0   2 |  * 72  *  * |  1 1 0
. x x     . |   4 |  0  2   2 |  *  * 72  * |  1 0 1
. . x12/11o |  12 |  0  0  12 |  *  *  * 12 |  0 1 1
------------+-----+-----------+-------------+-------
x6x x     .   24 | 12 12  12 |  2  6  6  0 | 12 * *
x . x12/11o   24 | 12  0  24 |  0 12  0  2 |  * 6 *
. x x12/11o   24 |  0 12  24 |  0  0 12  2 |  * * 6

x6x x6x

. . . . | 144 |  1  1  1  1 |  1  1  1  1  1  1 | 1 1 1 1
--------+-----+-------------+-------------------+--------
x . . . |   2 | 72  *  *  * |  1  1  1  0  0  0 | 1 1 1 0
. x . . |   2 |  * 72  *  * |  1  0  0  1  1  0 | 1 1 0 1
. . x . |   2 |  *  * 72  * |  0  1  0  1  0  1 | 1 0 1 1
. . . x |   2 |  *  *  * 72 |  0  0  1  0  1  1 | 0 1 1 1
--------+-----+-------------+-------------------+--------
x6x . . |  12 |  6  6  0  0 | 12  *  *  *  *  * | 1 1 0 0
x . x . |   4 |  2  0  2  0 |  * 36  *  *  *  * | 1 0 1 0
x . . x |   4 |  2  0  0  2 |  *  * 36  *  *  * | 0 1 1 0
. x x . |   4 |  0  2  2  0 |  *  *  * 36  *  * | 1 0 0 1
. x . x |   4 |  0  2  0  2 |  *  *  *  * 36  * | 0 1 0 1
. . x6x |  12 |  0  0  6  6 |  *  *  *  *  * 12 | 0 0 1 1
--------+-----+-------------+-------------------+--------
x6x x .   24 | 12 12 12  0 |  2  6  0  6  0  0 | 6 * * *
x6x . x   24 | 12 12  0 12 |  2  0  6  0  6  0 | * 6 * *
x . x6x   24 | 12  0 12 12 |  0  6  6  0  0  2 | * * 6 *
. x x6x   24 |  0 12 12 12 |  0  0  0  6  6  2 | * * * 6

© 2004-2019
top of page