Acronym ..., thex || prit Name (degenerate) thex atop prit Circumradius ∞   i.e. flat in euclidean space Confer general polytopal classes: decomposition

It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.

Incidence matrix according to Dynkin symbol

```xx3xx3oo4ox&#x   → height = 0
(thex || prit)

o.3o.3o.4o.    | 48   * |  1  4   4  0   0   0 |  4  4  4   8   4  0  0  0  0  0 |  4 1  8  4  4  4  1  0  0  0 0 | 1  4  4  1 1 0
.o3.o3.o4.o    |  * 192 |  0  0   1  1   2   2 |  0  0  1   2   2  2  2  1  2  1 |  0 0  2  2  1  2  1  1  2  1 1 | 0  1  2  1 1 1
---------------+--------+----------------------+---------------------------------+--------------------------------+---------------
x. .. .. ..    |  2   0 | 24  *   *  *   *   * |  4  0  4   0   0  0  0  0  0  0 |  4 0  8  4  0  0  0  0  0  0 0 | 1  4  4  1 0 0
.. x. .. ..    |  2   0 |  * 96   *  *   *   * |  1  2  0   2   0  0  0  0  0  0 |  2 1  2  0  2  1  0  0  0  0 0 | 1  2  1  0 1 0
oo3oo3oo4oo&#x |  1   1 |  *  * 192  *   *   * |  0  0  1   2   2  0  0  0  0  0 |  0 0  2  2  1  2  1  0  0  0 0 | 0  1  2  1 1 0
.x .. .. ..    |  0   2 |  *  *   * 96   *   * |  0  0  1   0   0  2  2  0  0  0 |  0 0  2  2  0  0  0  1  2  1 0 | 0  1  2  1 0 1
.. .x .. ..    |  0   2 |  *  *   *  * 192   * |  0  0  0   1   0  1  0  1  1  0 |  0 0  1  0  1  1  0  1  1  0 1 | 0  1  1  0 1 1
.. .. .. .x    |  0   2 |  *  *   *  *   * 192 |  0  0  0   0   1  0  1  0  1  1 |  0 0  0  1  0  1  1  0  1  1 1 | 0  0  1  1 1 1
---------------+--------+----------------------+---------------------------------+--------------------------------+---------------
x.3x. .. ..    |  6   0 |  3  3   0  0   0   0 | 32  *  *   *   *  *  *  *  *  * |  2 0  2  0  0  0  0  0  0  0 0 | 1  2  1  0 0 0
.. x.3o. ..    |  3   0 |  0  3   0  0   0   0 |  * 64  *   *   *  *  *  *  *  * |  1 1  0  0  1  0  0  0  0  0 0 | 1  1  0  0 1 0
xx .. .. ..&#x |  2   2 |  1  0   2  1   0   0 |  *  * 96   *   *  *  *  *  *  * |  0 0  2  2  0  0  0  0  0  0 0 | 0  1  2  1 0 0
.. xx .. ..&#x |  2   2 |  0  1   2  0   1   0 |  *  *  * 192   *  *  *  *  *  * |  0 0  1  0  1  1  0  0  0  0 0 | 0  1  1  0 1 0
.. .. .. ox&#x |  1   2 |  0  0   2  0   0   1 |  *  *  *   * 192  *  *  *  *  * |  0 0  0  1  0  1  1  0  0  0 0 | 0  0  1  1 1 0
.x3.x .. ..    |  0   6 |  0  0   0  3   3   0 |  *  *  *   *   * 64  *  *  *  * |  0 0  1  0  0  0  0  1  1  0 0 | 0  1  1  0 0 1
.x .. .. .x    |  0   4 |  0  0   0  2   0   2 |  *  *  *   *   *  * 96  *  *  * |  0 0  0  1  0  0  0  0  1  1 0 | 0  0  1  1 0 1
.. .x3.o ..    |  0   3 |  0  0   0  0   3   0 |  *  *  *   *   *  *  * 64  *  * |  0 0  0  0  1  0  0  1  0  0 1 | 0  1  0  0 1 1
.. .x .. .x    |  0   4 |  0  0   0  0   2   2 |  *  *  *   *   *  *  *  * 96  * |  0 0  0  0  0  1  0  0  1  0 1 | 0  0  1  0 1 1
.. .. .o4.x    |  0   4 |  0  0   0  0   0   4 |  *  *  *   *   *  *  *  *  * 48 |  0 0  0  0  0  0  1  0  0  1 1 | 0  0  0  1 1 1
---------------+--------+----------------------+----------------------------------+--------------------------------+---------------
x.3x.3o. ..    ♦ 12   0 |  6 12   0  0   0   0 |  4  4  0   0   0  0  0  0  0  0 | 16 *  *  *  *  *  *  *  *  * * | 1  1  0  0 0 0
.. x.3o.4o.    ♦  6   0 |  0 12   0  0   0   0 |  0  8  0   0   0  0  0  0  0  0 |  * 8  *  *  *  *  *  *  *  * * | 1  0  0  0 1 0
xx3xx .. ..&#x ♦  6   6 |  3  3   6  3   3   0 |  1  0  3   3   0  1  0  0  0  0 |  * * 64  *  *  *  *  *  *  * * | 0  1  1  0 0 0
xx .. .. ox&#x ♦  2   4 |  1  0   4  2   0   2 |  0  0  2   0   2  0  1  0  0  0 |  * *  * 96  *  *  *  *  *  * * | 0  0  1  1 0 0
.. xx3oo ..&#x ♦  3   3 |  0  3   3  0   3   0 |  0  1  0   3   0  0  0  1  0  0 |  * *  *  * 64  *  *  *  *  * * | 0  1  0  0 1 0
.. xx .. ox&#x ♦  2   4 |  0  1   4  0   2   2 |  0  0  0   2   2  0  0  0  1  0 |  * *  *  *  * 96  *  *  *  * * | 0  0  1  0 1 0
.. .. oo4ox&#x ♦  1   4 |  0  0   4  0   0   4 |  0  0  0   0   4  0  0  0  0  1 |  * *  *  *  *  * 48  *  *  * * | 0  0  0  1 1 0
.x3.x3.o ..    ♦  0  12 |  0  0   0  6  12   0 |  0  0  0   0   0  4  0  4  0  0 |  * *  *  *  *  *  * 16  *  * * | 0  1  0  0 0 1
.x3.x .. .x    ♦  0  12 |  0  0   0  6   6   6 |  0  0  0   0   0  2  3  0  3  0 |  * *  *  *  *  *  *  * 32  * * | 0  0  1  0 0 1
.x .. .o4.x    ♦  0   8 |  0  0   0  4   0   8 |  0  0  0   0   0  0  4  0  0  2 |  * *  *  *  *  *  *  *  * 24 * | 0  0  0  1 0 1
.. .x3.o4.x    ♦  0  24 |  0  0   0  0  24  24 |  0  0  0   0   0  0  0  8 12  6 |  * *  *  *  *  *  *  *  *  * 8 | 0  0  0  0 1 1
---------------+--------+----------------------+---------------------------------+--------------------------------+---------------
x.3x.3o.4o.    ♦ 48   0 | 24 96   0  0   0   0 | 32 64  0   0   0  0  0  0  0  0 | 16 8  0  0  0  0  0  0  0  0 0 | 1  *  *  * * *
xx3xx3oo ..&#x ♦ 12  12 |  6 12  12  6  12   0 |  4  4  6  12   0  4  0  4  0  0 |  1 0  4  0  4  0  0  1  0  0 0 | * 16  *  * * *
xx3xx .. ox&#x ♦  6  12 |  3  3  12  6   6   6 |  1  0  6   6   6  2  3  0  3  0 |  0 0  2  3  0  3  0  0  1  0 0 | *  * 32  * * *
xx .. oo4ox&#x ♦  2   8 |  1  0   8  4   0   8 |  0  0  4   0   8  0  4  0  0  2 |  0 0  0  4  0  0  2  0  0  1 0 | *  *  * 24 * *
.. xx3oo4ox&#x ♦  6  24 |  0 12  24  0  24  24 |  0  8  0  24  24  0  0  8 12  6 |  0 1  0  0  8 12  6  0  0  0 1 | *  *  *  * 8 *
.x3.x3.o4.x    ♦  0 192 |  0  0   0 96 192 192 |  0  0  0   0   0 64 96 64 96 48 |  0 0  0  0  0  0  0 16 32 24 8 | *  *  *  * * 1
```