Acronym tactaf
Name tericellitruncated tetradecapeton,
pentisteritruncated heptapeton
Circumradius sqrt(5) = 2.236068
Face vector 840, 3360, 5250, 3780, 1176, 126
Confer
general polytopal classes:
Wythoffian polypeta  
External
links
wikipedia   polytopewiki  

Incidence matrix according to Dynkin symbol

x3x3o3o3x3x

. . . . . .    | 840 |   2    6 |   6    6   1    6    6 |   6  12   6   6   2   6 |  2   6   6   6   6   2  1 |  2  2  6
---------------+-----+----------+------------------------+-------------------------+---------------------------+---------
x . . . . .  & |   2 | 840    * |   3    3   1    0    0 |   3   6   6   3   0   0 |  1   3   6   3   6   1  0 |  1  2  6
. x . . . .  & |   2 |   * 2520 |   1    1   0    2    2 |   2   4   1   2   1   3 |  1   3   2   3   2   1  1 |  2  1  3
---------------+-----+----------+------------------------+-------------------------+---------------------------+---------
x3x . . . .  & |   6 |   3    3 | 840    *   *    *    * |   2   2   1   0   0   0 |  1   2   2   1   2   0  0 |  1  1  3
x . . . x .  & |   4 |   2    2 |   * 1260   *    *    * |   0   2   1   2   0   0 |  0   1   2   2   2   1  0 |  1  1  3
x . . . . x    |   4 |   4    0 |   *    * 210    *    * |   0   0   6   0   0   0 |  0   0   6   0   6   0  0 |  0  2  6
. x3o . . .  & |   3 |   0    3 |   *    *   * 1680    * |   1   0   0   1   1   1 |  1   1   1   1   0   1  1 |  2  1  1
. x . . x .    |   4 |   0    4 |   *    *   *    * 1260 |   0   2   0   0   0   2 |  0   2   0   2   1   0  1 |  2  0  2
---------------+-----+----------+------------------------+-------------------------+---------------------------+---------
x3x3o . . .  &   12 |   6   12 |   4    0   0    4    0 | 420   *   *   *   *   * |  1   1   1   0   0   0  0 |  1  1  1
x3x . . x .  &   12 |   6   12 |   2    3   0    0    3 |   * 840   *   *   *   * |  0   1   0   1   1   0  0 |  1  0  2
x3x . . . x  &   12 |  12    6 |   2    3   3    0    0 |   *   * 420   *   *   * |  0   0   2   0   2   0  0 |  0  1  3
x . . o3x .  &    6 |   3    6 |   0    3   0    2    0 |   *   *   * 840   *   * |  0   0   1   1   0   1  0 |  1  1  1
. x3o3o . .  &    4 |   0    6 |   0    0   0    4    0 |   *   *   *   * 420   * |  1   0   0   0   0   1  1 |  2  1  0
. x3o . x .  &    6 |   0    9 |   0    0   0    2    3 |   *   *   *   *   * 840 |  0   1   0   1   0   0  1 |  2  0  1
---------------+-----+----------+------------------------+-------------------------+---------------------------+---------
x3x3o3o . .  &   20 |  10   30 |  10    0   0   20    0 |   5   0   0   0   5   0 | 84   *   *   *   *   *  * |  1  1  0
x3x3o . x .  &   24 |  12   36 |   8    6   0    8   12 |   2   4   0   0   0   4 |  * 210   *   *   *   *  * |  1  0  1
x3x3o . . x  &   24 |  24   24 |   8   12   6    8    0 |   2   0   4   4   0   0 |  *   * 210   *   *   *  * |  0  1  1
x3x . o3x .  &   18 |   9   27 |   3    9   0    6    9 |   0   3   0   3   0   3 |  *   *   * 280   *   *  * |  1  0  1
x3x . . x3x      36 |  36   36 |  12   18   9    0    9 |   0   6   6   0   0   0 |  *   *   *   * 140   *  * |  0  0  2
x . o3o3x .  &    8 |   4   12 |   0    6   0    8    0 |   0   0   0   4   2   0 |  *   *   *   *   * 210  * |  1  1  0
. x3o3o3x .      20 |   0   60 |   0    0   0   40   30 |   0   0   0   0  10  20 |  *   *   *   *   *   * 42 |  2  0  0
---------------+-----+----------+------------------------+-------------------------+---------------------------+---------
x3x3o3o3x .  &  120 |  60  360 |  60   90   0  240  180 |  30  60   0  60  60 120 |  6  15   0  20   0  15  6 | 14  *  *
x3x3o3o . x  &   40 |  40   60 |  20   30  10   40    0 |  10   0  10  20  10   0 |  2   0   5   0   0   5  0 |  * 42  *
x3x3o . x3x  &   72 |  72  108 |  36   54  18   24   36 |   6  24  18  12   0  12 |  0   3   3   4   4   0  0 |  *  * 70

© 2004-2025
top of page