Acronym | hatut (old: hittut) |
Name | hexagon truncatet-tetrahedron duoprism |
Circumradius | sqrt(19/8) = 1.541104 |
Volume | 23 sqrt(6)/8 = 7.042283 |
Face vector | 72, 180, 168, 72, 14 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x6o x3x3o . . . . . | 72 | 2 1 2 | 1 2 4 2 1 | 1 2 4 2 1 | 2 1 2 ----------+----+----------+----------------+--------------+------ x . . . . | 2 | 72 * * | 1 1 2 0 0 | 1 2 2 1 0 | 2 1 1 . . x . . | 2 | * 36 * | 0 2 0 2 0 | 1 0 4 0 1 | 2 0 2 . . . x . | 2 | * * 72 | 0 0 2 1 1 | 0 1 2 2 1 | 1 1 2 ----------+----+----------+----------------+--------------+------ x6o . . . | 6 | 6 0 0 | 12 * * * * | 1 2 0 0 0 | 2 1 0 x . x . . | 4 | 2 2 0 | * 36 * * * | 1 0 2 0 0 | 2 0 1 x . . x . | 4 | 2 0 2 | * * 72 * * | 0 1 1 1 0 | 1 1 1 . . x3x . | 6 | 0 3 3 | * * * 24 * | 0 0 2 0 1 | 1 0 2 . . . x3o | 3 | 0 0 3 | * * * * 24 | 0 0 0 2 1 | 0 1 2 ----------+----+----------+----------------+--------------+------ x6o x . . ♦ 12 | 12 6 0 | 2 6 0 0 0 | 6 * * * * | 2 0 0 x6o . x . ♦ 12 | 12 0 6 | 2 0 6 0 0 | * 12 * * * | 1 1 0 x . x3x . ♦ 12 | 6 6 6 | 0 3 3 2 0 | * * 24 * * | 1 0 1 x . . x3o ♦ 6 | 3 0 6 | 0 0 3 0 2 | * * * 24 * | 0 1 1 . . x3x3o ♦ 12 | 0 6 12 | 0 0 0 4 4 | * * * * 6 | 0 0 2 ----------+----+----------+----------------+--------------+------ x6o x3x . ♦ 36 | 36 18 18 | 6 18 18 6 0 | 3 3 6 0 0 | 4 * * x6o . x3o ♦ 18 | 18 0 18 | 3 0 18 0 6 | 0 3 0 6 0 | * 4 * x . x3x3o ♦ 24 | 12 12 24 | 0 6 12 8 8 | 0 0 4 4 2 | * * 6
x3x x3x3o . . . . . | 72 | 1 1 1 2 | 1 1 2 1 2 2 1 | 1 2 2 1 2 1 1 | 2 1 1 1 ----------+----+-------------+----------------------+--------------------+-------- x . . . . | 2 | 36 * * * | 1 1 2 0 0 0 0 | 1 2 2 1 0 0 0 | 2 1 1 0 . x . . . | 2 | * 36 * * | 1 0 0 1 2 0 0 | 1 2 0 0 2 1 0 | 2 1 0 1 . . x . . | 2 | * * 36 * | 0 1 0 1 0 2 0 | 1 0 2 0 2 0 1 | 2 0 1 1 . . . x . | 2 | * * * 72 | 0 0 1 0 1 1 1 | 0 1 1 1 1 1 1 | 1 1 1 1 ----------+----+-------------+----------------------+--------------------+-------- x3x . . . | 6 | 3 3 0 0 | 12 * * * * * * | 1 2 0 0 0 0 0 | 2 1 0 0 x . x . . | 4 | 2 0 2 0 | * 18 * * * * * | 1 0 2 0 0 0 0 | 2 0 1 0 x . . x . | 4 | 2 0 0 2 | * * 36 * * * * | 0 1 1 1 0 0 0 | 1 1 1 0 . x x . . | 4 | 0 2 2 0 | * * * 18 * * * | 1 0 0 0 2 0 0 | 2 0 0 1 . x . x . | 4 | 0 2 0 2 | * * * * 36 * * | 0 1 0 0 1 1 0 | 1 1 0 1 . . x3x . | 6 | 0 0 3 3 | * * * * * 24 * | 0 0 1 0 1 0 1 | 1 0 1 1 . . . x3o | 3 | 0 0 0 3 | * * * * * * 24 | 0 0 0 1 0 1 1 | 0 1 1 1 ----------+----+-------------+----------------------+--------------------+-------- x3x x . . ♦ 12 | 6 6 6 0 | 2 3 0 3 0 0 0 | 6 * * * * * * | 2 0 0 0 x3x . x . ♦ 12 | 6 6 0 6 | 2 0 3 0 3 0 0 | * 12 * * * * * | 1 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 | 0 3 3 0 0 2 0 | * * 12 * * * * | 1 0 1 0 x . . x3o ♦ 6 | 3 0 0 6 | 0 0 3 0 0 0 2 | * * * 12 * * * | 0 1 1 0 . x x3x . ♦ 12 | 0 6 6 6 | 0 0 0 3 3 2 0 | * * * * 12 * * | 1 0 0 1 . x . x3o ♦ 6 | 0 3 0 6 | 0 0 0 0 3 0 2 | * * * * * 12 * | 0 1 0 1 . . x3x3o ♦ 12 | 0 0 6 12 | 0 0 0 0 0 4 4 | * * * * * * 6 | 0 0 1 1 ----------+----+-------------+----------------------+--------------------+-------- x3x x3x . ♦ 36 | 18 18 18 18 | 6 9 9 9 9 6 0 | 3 3 3 0 3 0 0 | 4 * * * x3x . x3o ♦ 18 | 9 9 0 18 | 3 0 9 0 9 0 6 | 0 3 0 3 0 3 0 | * 4 * * x . x3x3o ♦ 24 | 12 0 12 24 | 0 6 12 0 0 8 8 | 0 0 4 4 0 0 2 | * * 3 * . x x3x3o ♦ 24 | 0 12 12 24 | 0 0 0 6 12 8 8 | 0 0 0 0 4 4 2 | * * * 3
© 2004-2025 | top of page |