Acronym hatut (old: hittut)
Name hexagon truncatet-tetrahedron duoprism
Circumradius sqrt(19/8) = 1.541104
Volume 23 sqrt(6)/8 = 7.042283
Face vector 72, 180, 168, 72, 14
Confer
more general:
n,tut-dip  
general polytopal classes:
Wythoffian polytera   lace simplices  
External
links
polytopewiki  

Incidence matrix according to Dynkin symbol

x6o x3x3o

. . . . . | 72 |  2  1  2 |  1  2  4  2  1 | 1  2  4  2 1 | 2 1 2
----------+----+----------+----------------+--------------+------
x . . . . |  2 | 72  *  * |  1  1  2  0  0 | 1  2  2  1 0 | 2 1 1
. . x . . |  2 |  * 36  * |  0  2  0  2  0 | 1  0  4  0 1 | 2 0 2
. . . x . |  2 |  *  * 72 |  0  0  2  1  1 | 0  1  2  2 1 | 1 1 2
----------+----+----------+----------------+--------------+------
x6o . . . |  6 |  6  0  0 | 12  *  *  *  * | 1  2  0  0 0 | 2 1 0
x . x . . |  4 |  2  2  0 |  * 36  *  *  * | 1  0  2  0 0 | 2 0 1
x . . x . |  4 |  2  0  2 |  *  * 72  *  * | 0  1  1  1 0 | 1 1 1
. . x3x . |  6 |  0  3  3 |  *  *  * 24  * | 0  0  2  0 1 | 1 0 2
. . . x3o |  3 |  0  0  3 |  *  *  *  * 24 | 0  0  0  2 1 | 0 1 2
----------+----+----------+----------------+--------------+------
x6o x . .  12 | 12  6  0 |  2  6  0  0  0 | 6  *  *  * * | 2 0 0
x6o . x .  12 | 12  0  6 |  2  0  6  0  0 | * 12  *  * * | 1 1 0
x . x3x .  12 |  6  6  6 |  0  3  3  2  0 | *  * 24  * * | 1 0 1
x . . x3o   6 |  3  0  6 |  0  0  3  0  2 | *  *  * 24 * | 0 1 1
. . x3x3o  12 |  0  6 12 |  0  0  0  4  4 | *  *  *  * 6 | 0 0 2
----------+----+----------+----------------+--------------+------
x6o x3x .  36 | 36 18 18 |  6 18 18  6  0 | 3  3  6  0 0 | 4 * *
x6o . x3o  18 | 18  0 18 |  3  0 18  0  6 | 0  3  0  6 0 | * 4 *
x . x3x3o  24 | 12 12 24 |  0  6 12  8  8 | 0  0  4  4 2 | * * 6

x3x x3x3o

. . . . . | 72 |  1  1  1  2 |  1  1  2  1  2  2  1 | 1  2  2  1  2  1 1 | 2 1 1 1
----------+----+-------------+----------------------+--------------------+--------
x . . . . |  2 | 36  *  *  * |  1  1  2  0  0  0  0 | 1  2  2  1  0  0 0 | 2 1 1 0
. x . . . |  2 |  * 36  *  * |  1  0  0  1  2  0  0 | 1  2  0  0  2  1 0 | 2 1 0 1
. . x . . |  2 |  *  * 36  * |  0  1  0  1  0  2  0 | 1  0  2  0  2  0 1 | 2 0 1 1
. . . x . |  2 |  *  *  * 72 |  0  0  1  0  1  1  1 | 0  1  1  1  1  1 1 | 1 1 1 1
----------+----+-------------+----------------------+--------------------+--------
x3x . . . |  6 |  3  3  0  0 | 12  *  *  *  *  *  * | 1  2  0  0  0  0 0 | 2 1 0 0
x . x . . |  4 |  2  0  2  0 |  * 18  *  *  *  *  * | 1  0  2  0  0  0 0 | 2 0 1 0
x . . x . |  4 |  2  0  0  2 |  *  * 36  *  *  *  * | 0  1  1  1  0  0 0 | 1 1 1 0
. x x . . |  4 |  0  2  2  0 |  *  *  * 18  *  *  * | 1  0  0  0  2  0 0 | 2 0 0 1
. x . x . |  4 |  0  2  0  2 |  *  *  *  * 36  *  * | 0  1  0  0  1  1 0 | 1 1 0 1
. . x3x . |  6 |  0  0  3  3 |  *  *  *  *  * 24  * | 0  0  1  0  1  0 1 | 1 0 1 1
. . . x3o |  3 |  0  0  0  3 |  *  *  *  *  *  * 24 | 0  0  0  1  0  1 1 | 0 1 1 1
----------+----+-------------+----------------------+--------------------+--------
x3x x . .  12 |  6  6  6  0 |  2  3  0  3  0  0  0 | 6  *  *  *  *  * * | 2 0 0 0
x3x . x .  12 |  6  6  0  6 |  2  0  3  0  3  0  0 | * 12  *  *  *  * * | 1 1 0 0
x . x3x .  12 |  6  0  6  6 |  0  3  3  0  0  2  0 | *  * 12  *  *  * * | 1 0 1 0
x . . x3o   6 |  3  0  0  6 |  0  0  3  0  0  0  2 | *  *  * 12  *  * * | 0 1 1 0
. x x3x .  12 |  0  6  6  6 |  0  0  0  3  3  2  0 | *  *  *  * 12  * * | 1 0 0 1
. x . x3o   6 |  0  3  0  6 |  0  0  0  0  3  0  2 | *  *  *  *  * 12 * | 0 1 0 1
. . x3x3o  12 |  0  0  6 12 |  0  0  0  0  0  4  4 | *  *  *  *  *  * 6 | 0 0 1 1
----------+----+-------------+----------------------+--------------------+--------
x3x x3x .  36 | 18 18 18 18 |  6  9  9  9  9  6  0 | 3  3  3  0  3  0 0 | 4 * * *
x3x . x3o  18 |  9  9  0 18 |  3  0  9  0  9  0  6 | 0  3  0  3  0  3 0 | * 4 * *
x . x3x3o  24 | 12  0 12 24 |  0  6 12  0  0  8  8 | 0  0  4  4  0  0 2 | * * 3 *
. x x3x3o  24 |  0 12 12 24 |  0  0  0  6 12  8  8 | 0  0  0  0  4  4 2 | * * * 3

© 2004-2025
top of page