Acronym stowoct Name octagram octahedron duoprism Circumradius sqrt[(3-sqrt(2))/2] = 0.890446 Confer more general: n,oct-dip   general polytopal classes: segmentotera

As abstract polytope stowoct is isomorphic to owoct, thereby replacing octagrams by octagons, resp. stop by op, resp. tistodip by todip.

Incidence matrix according to Dynkin symbol

```x8/3o x3o4o

.   . . . . | 48 |  2  4 | 1  8  4 |  4  8 1 | 4 2
------------+----+-------+---------+---------+----
x   . . . . |  2 | 48  * | 1  4  0 |  4  4 0 | 4 1
.   . x . . |  2 |  * 96 | 0  2  2 |  1  4 1 | 2 2
------------+----+-------+---------+---------+----
x8/3o . . . |  8 |  8  0 | 6  *  * |  4  0 0 | 4 0
x   . x . . |  4 |  2  2 | * 96  * |  1  2 0 | 2 1
.   . x3o . |  3 |  0  3 | *  * 64 |  0  2 1 | 1 2
------------+----+-------+---------+---------+----
x8/3o x . . ♦ 16 | 16  8 | 2  8  0 | 12  * * | 2 0
x   . x3o . ♦  6 |  3  6 | 0  3  2 |  * 64 * | 1 1
.   . x3o4o ♦  6 |  0 12 | 0  0  8 |  *  * 8 | 0 2
------------+----+-------+---------+---------+----
x8/3o x3o . ♦ 24 | 24 24 | 3 24  8 |  3  8 0 | 8 *
x   . x3o4o ♦ 12 |  6 24 | 0 12 16 |  0  8 2 | * 8
```

```x4/3x x3o4o

.   . . . . | 48 |  1  1  4 | 1  4  4  4 |  4  4  4 1 | 4 1 1
------------+----+----------+------------+------------+------
x   . . . . |  2 | 24  *  * | 1  4  0  0 |  4  4  0 0 | 4 1 0
.   x . . . |  2 |  * 24  * | 1  0  4  0 |  4  0  4 0 | 4 0 1
.   . x . . |  2 |  *  * 96 | 0  1  1  2 |  1  2  2 1 | 2 1 1
------------+----+----------+------------+------------+------
x4/3x . . . |  8 |  4  4  0 | 6  *  *  * |  4  0  0 0 | 4 0 0
x   . x . . |  4 |  2  0  2 | * 48  *  * |  1  2  0 0 | 2 1 0
.   x x . . |  4 |  0  2  2 | *  * 48  * |  1  0  2 0 | 2 0 1
.   . x3o . |  3 |  0  0  3 | *  *  * 64 |  0  1  1 1 | 1 1 1
------------+----+----------+------------+------------+------
x4/3x x . . ♦ 16 |  8  8  8 | 2  4  4  0 | 12  *  * * | 2 0 0
x   . x3o . ♦  6 |  3  0  6 | 0  3  0  2 |  * 32  * * | 1 1 0
.   x x3o . ♦  6 |  0  3  6 | 0  0  3  2 |  *  * 32 * | 1 0 1
.   . x3o4o ♦  6 |  0  0 12 | 0  0  0  8 |  *  *  * 8 | 0 1 1
------------+----+----------+------------+------------+------
x4/3x x3o . ♦ 24 | 12 12 24 | 3 12 12  8 |  3  4  4 0 | 8 * *
x   . x3o4o ♦ 12 |  6  0 24 | 0 12  0 16 |  0  8  0 2 | * 4 *
.   x x3o4o ♦ 12 |  0  6 24 | 0  0 12 16 |  0  0  8 2 | * * 4
```

```x8/3o o3x3o

.   . . . . | 48 |  2  4 | 1  8  2  2 |  4  4  4 1 | 2 2 2
------------+----+-------+------------+------------+------
x   . . . . |  2 | 48  * | 1  4  0  0 |  4  2  2 0 | 2 2 1
.   . . x . |  2 |  * 96 | 0  2  1  1 |  1  2  2 1 | 1 1 2
------------+----+-------+------------+------------+------
x8/3o . . . |  8 |  8  0 | 6  *  *  * |  4  0  0 0 | 2 2 0
x   . . x . |  4 |  2  2 | * 96  *  * |  1  1  1 0 | 1 1 1
.   . o3x . |  3 |  0  3 | *  * 32  * |  0  2  0 1 | 1 0 2
.   . . x3o |  3 |  0  3 | *  *  * 32 |  0  0  2 1 | 0 1 2
------------+----+-------+------------+------------+------
x8/3o . x . ♦ 16 | 16  8 | 2  8  0  0 | 12  *  * * | 1 1 0
x   . o3x . ♦  6 |  3  6 | 0  3  2  0 |  * 32  * * | 1 0 1
x   . . x3o ♦  6 |  3  6 | 0  3  0  2 |  *  * 32 * | 0 1 1
.   . o3x3o ♦  6 |  0 12 | 0  0  4  4 |  *  *  * 8 | 0 0 2
------------+----+-------+------------+------------+------
x8/3o o3x . ♦ 24 | 24 24 | 3 24  8  0 |  3  8  0 0 | 4 * *
x8/3o . x3o ♦ 24 | 24 24 | 3 24  0  8 |  3  0  8 0 | * 4 *
x   . o3x3o ♦ 12 |  6 24 | 0 12  8  8 |  0  4  4 2 | * * 8
```

```x4/3x o3x3o

.   . . . . | 48 |  1  1  4 | 1  4  4  2  2 |  4  2  2  2  2 1 | 2 2 1 1
------------+----+----------+---------------+------------------+--------
x   . . . . |  2 | 24  *  * | 1  4  0  0  0 |  4  2  2  0  0 0 | 2 2 1 0
.   x . . . |  2 |  * 24  * | 1  0  4  0  0 |  4  0  0  2  2 0 | 2 2 0 1
.   . . x . |  2 |  *  * 96 | 0  1  1  1  1 |  1  1  1  1  1 1 | 1 1 1 1
------------+----+----------+---------------+------------------+--------
x4/3x . . . |  8 |  4  4  0 | 6  *  *  *  * |  4  0  0  0  0 0 | 2 2 0 0
x   . . x . |  4 |  2  0  2 | * 48  *  *  * |  1  1  1  0  0 0 | 1 1 1 0
.   x . x . |  4 |  0  2  2 | *  * 48  *  * |  1  0  0  1  1 0 | 1 1 0 1
.   . o3x . |  3 |  0  0  3 | *  *  * 32  * |  0  1  0  1  0 1 | 1 0 1 1
.   . . x3o |  3 |  0  0  3 | *  *  *  * 32 |  0  0  1  0  1 1 | 0 1 1 1
------------+----+----------+---------------+------------------+--------
x4/3x . x . ♦ 16 |  8  8  8 | 2  4  4  0  0 | 12  *  *  *  * * | 1 1 0 0
x   . o3x . ♦  6 |  3  0  6 | 0  3  0  2  0 |  * 16  *  *  * * | 1 0 1 0
x   . . x3o ♦  6 |  3  0  6 | 0  3  0  0  2 |  *  * 16  *  * * | 0 1 1 0
.   x o3x . ♦  6 |  0  3  6 | 0  0  3  2  0 |  *  *  * 16  * * | 1 0 0 1
.   x . x3o ♦  6 |  0  3  6 | 0  0  3  0  2 |  *  *  *  * 16 * | 0 1 0 1
.   . o3x3o ♦  6 |  0  0 12 | 0  0  0  4  4 |  *  *  *  *  * 8 | 0 0 1 1
------------+----+----------+---------------+------------------+--------
x4/3x o3x . ♦ 24 | 12 12 24 | 3 12 12  8  0 |  3  4  0  4  0 0 | 4 * * *
x4/3x . x3o ♦ 24 | 12 12 24 | 3 12 12  0  8 |  3  0  4  0  4 0 | * 4 * *
x   . o3x3o ♦ 12 |  6  0 24 | 0 12  0  8  8 |  0  4  4  0  0 2 | * * 4 *
.   x o3x3o ♦ 12 |  0  6 24 | 0  0 12  8  8 |  0  0  0  4  4 2 | * * * 4
```

```xo3ox xx8/3oo&#x   → height = sqrt(2/3) = 0.816497
(tistodip || {3}-gyro tistodip)

o.3o. o.8/3o.    | 24  * |  2  2  2  0  0 | 1  4 1  2  1  4 0  0 0 | 2 2 1  4  2 2 0 0 | 1 2 2 1 0
.o3.o .o8/3.o    |  * 24 |  0  0  2  2  2 | 0  0 0  1  2  4 1  4 1 | 0 0 1  2  4 2 2 2 | 0 2 1 2 1
-----------------+-------+----------------+------------------------+-------------------+----------
x. .. ..   ..    |  2  0 | 24  *  *  *  * | 1  2 0  1  0  0 0  0 0 | 2 1 1  2  0 0 0 0 | 1 2 1 0 0
.. .. x.   ..    |  2  0 |  * 24  *  *  * | 0  2 1  0  0  2 0  0 0 | 1 2 0  2  1 2 0 0 | 1 2 2 1 0
oo3oo oo8/3oo&#x |  1  1 |  *  * 48  *  * | 0  0 0  1  1  2 0  0 0 | 0 0 1  2  2 1 0 0 | 0 1 1 1 0
.. .x ..   ..    |  0  2 |  *  *  * 24  * | 0  0 0  0  1  0 1  2 0 | 0 0 1  0  2 0 2 1 | 0 2 0 1 1
.. .. .x   ..    |  0  2 |  *  *  *  * 24 | 0  0 0  0  0  2 0  2 1 | 0 0 0  1  2 2 1 2 | 0 2 1 2 1
-----------------+-------+----------------+------------------------+-------------------+----------
x.3o. ..   ..    |  3  0 |  3  0  0  0  0 | 8  * *  *  *  * *  * * | 2 0 1  0  0 0 0 0 | 1 2 0 0 0
x. .. x.   ..    |  4  0 |  2  2  0  0  0 | * 24 *  *  *  * *  * * | 1 1 0  1  0 0 0 0 | 1 1 1 0 0
.. .. x.8/3o.    |  8  0 |  0  8  0  0  0 | *  * 3  *  *  * *  * * | 0 2 0  0  0 2 0 0 | 1 0 2 1 0
xo .. ..   ..&#x |  2  1 |  1  0  2  0  0 | *  * * 24  *  * *  * * | 0 0 1  2  0 0 0 0 | 0 2 1 0 0
.. ox ..   ..&#x |  1  2 |  0  0  2  1  0 | *  * *  * 24  * *  * * | 0 0 1  0  2 0 0 0 | 0 2 0 1 0
.. .. xx   ..&#x |  2  2 |  0  1  2  0  1 | *  * *  *  * 48 *  * * | 0 0 0  1  1 1 0 0 | 0 1 1 1 0
.o3.x ..   ..    |  0  3 |  0  0  0  3  0 | *  * *  *  *  * 8  * * | 0 0 1  0  0 0 2 0 | 0 2 0 0 1
.. .x .x   ..    |  0  4 |  0  0  0  2  2 | *  * *  *  *  * * 24 * | 0 0 0  0  1 0 1 1 | 0 1 0 1 1
.. .. .x8/3.o    |  0  8 |  0  0  0  0  8 | *  * *  *  *  * *  * 3 | 0 0 0  0  0 2 0 2 | 0 0 1 2 1
-----------------+-------+----------------+------------------------+-------------------+----------
x.3o. x.   ..    ♦  6  0 |  6  3  0  0  0 | 2  3 0  0  0  0 0  0 0 | 8 * *  *  * * * * | 1 1 0 0 0
x. .. x.8/3o.    ♦ 16  0 |  8 16  0  0  0 | 0  8 2  0  0  0 0  0 0 | * 3 *  *  * * * * | 1 0 1 0 0
xo3ox ..   ..&#x ♦  3  3 |  3  0  6  3  0 | 1  0 0  3  3  0 1  0 0 | * * 8  *  * * * * | 0 2 0 0 0
xo .. xx   ..&#x ♦  4  2 |  2  2  4  0  1 | 0  1 0  2  0  2 0  0 0 | * * * 24  * * * * | 0 1 1 0 0
.. ox xx   ..&#x ♦  2  4 |  0  1  4  2  2 | 0  0 0  0  2  2 0  1 0 | * * *  * 24 * * * | 0 1 0 1 0
.. .. xx8/3oo&#x ♦  8  8 |  0  8  8  0  8 | 0  0 1  0  0  8 0  0 1 | * * *  *  * 6 * * | 0 0 1 1 0
.o3.x .x   ..    ♦  0  6 |  0  0  0  6  3 | 0  0 0  0  0  0 2  3 0 | * * *  *  * * 8 * | 0 1 0 0 1
.. .x .x8/3.o    ♦  0 16 |  0  0  0  8 16 | 0  0 0  0  0  0 0  8 2 | * * *  *  * * * 3 | 0 0 0 1 1
-----------------+-------+----------------+------------------------+-------------------+----------
x.3o. x.8/3o.    ♦ 24  0 | 24 24  0  0  0 | 8 24 3  0  0  0 0  0 0 | 8 3 0  0  0 0 0 0 | 1 * * * *
xo3ox xx   ..&#x ♦  6  6 |  6  6  6  6  6 | 2  3 0  6  6  6 2  3 0 | 1 0 2  3  3 0 1 0 | * 8 * * *
xo .. xx8/3oo&#x ♦ 16  8 |  8 16 16  0  8 | 0  8 2  8  0 16 0  0 1 | 0 1 0  8  0 2 0 0 | * * 3 * *
.. ox xx8/3oo&#x ♦  8 16 |  0  8 16  8 16 | 0  0 1  0  8 16 0  8 2 | 0 0 0  0  8 2 0 1 | * * * 3 *
.o3.x .x8/3.o    ♦  0 24 |  0  0  0 24 24 | 0  0 0  0  0  0 8 24 3 | 0 0 0  0  0 0 8 3 | * * * * 1
```

 © 2004-2021 top of page