Acronym | stowoct |
Name | octagram octahedron duoprism |
Circumradius | sqrt[(3-sqrt(2))/2] = 0.890446 |
Face vector | 48, 144, 166, 84, 16 |
Confer |
|
As abstract polytope stowoct is isomorphic to owoct, thereby replacing octagrams by octagons, resp. stop by op, resp. tistodip by todip.
Incidence matrix according to Dynkin symbol
x8/3o x3o4o . . . . . | 48 | 2 4 | 1 8 4 | 4 8 1 | 4 2 ------------+----+-------+---------+---------+---- x . . . . | 2 | 48 * | 1 4 0 | 4 4 0 | 4 1 . . x . . | 2 | * 96 | 0 2 2 | 1 4 1 | 2 2 ------------+----+-------+---------+---------+---- x8/3o . . . | 8 | 8 0 | 6 * * | 4 0 0 | 4 0 x . x . . | 4 | 2 2 | * 96 * | 1 2 0 | 2 1 . . x3o . | 3 | 0 3 | * * 64 | 0 2 1 | 1 2 ------------+----+-------+---------+---------+---- x8/3o x . . ♦ 16 | 16 8 | 2 8 0 | 12 * * | 2 0 x . x3o . ♦ 6 | 3 6 | 0 3 2 | * 64 * | 1 1 . . x3o4o ♦ 6 | 0 12 | 0 0 8 | * * 8 | 0 2 ------------+----+-------+---------+---------+---- x8/3o x3o . ♦ 24 | 24 24 | 3 24 8 | 3 8 0 | 8 * x . x3o4o ♦ 12 | 6 24 | 0 12 16 | 0 8 2 | * 8
x4/3x x3o4o . . . . . | 48 | 1 1 4 | 1 4 4 4 | 4 4 4 1 | 4 1 1 ------------+----+----------+------------+------------+------ x . . . . | 2 | 24 * * | 1 4 0 0 | 4 4 0 0 | 4 1 0 . x . . . | 2 | * 24 * | 1 0 4 0 | 4 0 4 0 | 4 0 1 . . x . . | 2 | * * 96 | 0 1 1 2 | 1 2 2 1 | 2 1 1 ------------+----+----------+------------+------------+------ x4/3x . . . | 8 | 4 4 0 | 6 * * * | 4 0 0 0 | 4 0 0 x . x . . | 4 | 2 0 2 | * 48 * * | 1 2 0 0 | 2 1 0 . x x . . | 4 | 0 2 2 | * * 48 * | 1 0 2 0 | 2 0 1 . . x3o . | 3 | 0 0 3 | * * * 64 | 0 1 1 1 | 1 1 1 ------------+----+----------+------------+------------+------ x4/3x x . . ♦ 16 | 8 8 8 | 2 4 4 0 | 12 * * * | 2 0 0 x . x3o . ♦ 6 | 3 0 6 | 0 3 0 2 | * 32 * * | 1 1 0 . x x3o . ♦ 6 | 0 3 6 | 0 0 3 2 | * * 32 * | 1 0 1 . . x3o4o ♦ 6 | 0 0 12 | 0 0 0 8 | * * * 8 | 0 1 1 ------------+----+----------+------------+------------+------ x4/3x x3o . ♦ 24 | 12 12 24 | 3 12 12 8 | 3 4 4 0 | 8 * * x . x3o4o ♦ 12 | 6 0 24 | 0 12 0 16 | 0 8 0 2 | * 4 * . x x3o4o ♦ 12 | 0 6 24 | 0 0 12 16 | 0 0 8 2 | * * 4
x8/3o o3x3o . . . . . | 48 | 2 4 | 1 8 2 2 | 4 4 4 1 | 2 2 2 ------------+----+-------+------------+------------+------ x . . . . | 2 | 48 * | 1 4 0 0 | 4 2 2 0 | 2 2 1 . . . x . | 2 | * 96 | 0 2 1 1 | 1 2 2 1 | 1 1 2 ------------+----+-------+------------+------------+------ x8/3o . . . | 8 | 8 0 | 6 * * * | 4 0 0 0 | 2 2 0 x . . x . | 4 | 2 2 | * 96 * * | 1 1 1 0 | 1 1 1 . . o3x . | 3 | 0 3 | * * 32 * | 0 2 0 1 | 1 0 2 . . . x3o | 3 | 0 3 | * * * 32 | 0 0 2 1 | 0 1 2 ------------+----+-------+------------+------------+------ x8/3o . x . ♦ 16 | 16 8 | 2 8 0 0 | 12 * * * | 1 1 0 x . o3x . ♦ 6 | 3 6 | 0 3 2 0 | * 32 * * | 1 0 1 x . . x3o ♦ 6 | 3 6 | 0 3 0 2 | * * 32 * | 0 1 1 . . o3x3o ♦ 6 | 0 12 | 0 0 4 4 | * * * 8 | 0 0 2 ------------+----+-------+------------+------------+------ x8/3o o3x . ♦ 24 | 24 24 | 3 24 8 0 | 3 8 0 0 | 4 * * x8/3o . x3o ♦ 24 | 24 24 | 3 24 0 8 | 3 0 8 0 | * 4 * x . o3x3o ♦ 12 | 6 24 | 0 12 8 8 | 0 4 4 2 | * * 8
x4/3x o3x3o . . . . . | 48 | 1 1 4 | 1 4 4 2 2 | 4 2 2 2 2 1 | 2 2 1 1 ------------+----+----------+---------------+------------------+-------- x . . . . | 2 | 24 * * | 1 4 0 0 0 | 4 2 2 0 0 0 | 2 2 1 0 . x . . . | 2 | * 24 * | 1 0 4 0 0 | 4 0 0 2 2 0 | 2 2 0 1 . . . x . | 2 | * * 96 | 0 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 ------------+----+----------+---------------+------------------+-------- x4/3x . . . | 8 | 4 4 0 | 6 * * * * | 4 0 0 0 0 0 | 2 2 0 0 x . . x . | 4 | 2 0 2 | * 48 * * * | 1 1 1 0 0 0 | 1 1 1 0 . x . x . | 4 | 0 2 2 | * * 48 * * | 1 0 0 1 1 0 | 1 1 0 1 . . o3x . | 3 | 0 0 3 | * * * 32 * | 0 1 0 1 0 1 | 1 0 1 1 . . . x3o | 3 | 0 0 3 | * * * * 32 | 0 0 1 0 1 1 | 0 1 1 1 ------------+----+----------+---------------+------------------+-------- x4/3x . x . ♦ 16 | 8 8 8 | 2 4 4 0 0 | 12 * * * * * | 1 1 0 0 x . o3x . ♦ 6 | 3 0 6 | 0 3 0 2 0 | * 16 * * * * | 1 0 1 0 x . . x3o ♦ 6 | 3 0 6 | 0 3 0 0 2 | * * 16 * * * | 0 1 1 0 . x o3x . ♦ 6 | 0 3 6 | 0 0 3 2 0 | * * * 16 * * | 1 0 0 1 . x . x3o ♦ 6 | 0 3 6 | 0 0 3 0 2 | * * * * 16 * | 0 1 0 1 . . o3x3o ♦ 6 | 0 0 12 | 0 0 0 4 4 | * * * * * 8 | 0 0 1 1 ------------+----+----------+---------------+------------------+-------- x4/3x o3x . ♦ 24 | 12 12 24 | 3 12 12 8 0 | 3 4 0 4 0 0 | 4 * * * x4/3x . x3o ♦ 24 | 12 12 24 | 3 12 12 0 8 | 3 0 4 0 4 0 | * 4 * * x . o3x3o ♦ 12 | 6 0 24 | 0 12 0 8 8 | 0 4 4 0 0 2 | * * 4 * . x o3x3o ♦ 12 | 0 6 24 | 0 0 12 8 8 | 0 0 0 4 4 2 | * * * 4
xo3ox xx8/3oo&#x → height = sqrt(2/3) = 0.816497
(tistodip || {3}-gyro tistodip)
o.3o. o.8/3o. | 24 * | 2 2 2 0 0 | 1 4 1 2 1 4 0 0 0 | 2 2 1 4 2 2 0 0 | 1 2 2 1 0
.o3.o .o8/3.o | * 24 | 0 0 2 2 2 | 0 0 0 1 2 4 1 4 1 | 0 0 1 2 4 2 2 2 | 0 2 1 2 1
-----------------+-------+----------------+------------------------+-------------------+----------
x. .. .. .. | 2 0 | 24 * * * * | 1 2 0 1 0 0 0 0 0 | 2 1 1 2 0 0 0 0 | 1 2 1 0 0
.. .. x. .. | 2 0 | * 24 * * * | 0 2 1 0 0 2 0 0 0 | 1 2 0 2 1 2 0 0 | 1 2 2 1 0
oo3oo oo8/3oo&#x | 1 1 | * * 48 * * | 0 0 0 1 1 2 0 0 0 | 0 0 1 2 2 1 0 0 | 0 1 1 1 0
.. .x .. .. | 0 2 | * * * 24 * | 0 0 0 0 1 0 1 2 0 | 0 0 1 0 2 0 2 1 | 0 2 0 1 1
.. .. .x .. | 0 2 | * * * * 24 | 0 0 0 0 0 2 0 2 1 | 0 0 0 1 2 2 1 2 | 0 2 1 2 1
-----------------+-------+----------------+------------------------+-------------------+----------
x.3o. .. .. | 3 0 | 3 0 0 0 0 | 8 * * * * * * * * | 2 0 1 0 0 0 0 0 | 1 2 0 0 0
x. .. x. .. | 4 0 | 2 2 0 0 0 | * 24 * * * * * * * | 1 1 0 1 0 0 0 0 | 1 1 1 0 0
.. .. x.8/3o. | 8 0 | 0 8 0 0 0 | * * 3 * * * * * * | 0 2 0 0 0 2 0 0 | 1 0 2 1 0
xo .. .. ..&#x | 2 1 | 1 0 2 0 0 | * * * 24 * * * * * | 0 0 1 2 0 0 0 0 | 0 2 1 0 0
.. ox .. ..&#x | 1 2 | 0 0 2 1 0 | * * * * 24 * * * * | 0 0 1 0 2 0 0 0 | 0 2 0 1 0
.. .. xx ..&#x | 2 2 | 0 1 2 0 1 | * * * * * 48 * * * | 0 0 0 1 1 1 0 0 | 0 1 1 1 0
.o3.x .. .. | 0 3 | 0 0 0 3 0 | * * * * * * 8 * * | 0 0 1 0 0 0 2 0 | 0 2 0 0 1
.. .x .x .. | 0 4 | 0 0 0 2 2 | * * * * * * * 24 * | 0 0 0 0 1 0 1 1 | 0 1 0 1 1
.. .. .x8/3.o | 0 8 | 0 0 0 0 8 | * * * * * * * * 3 | 0 0 0 0 0 2 0 2 | 0 0 1 2 1
-----------------+-------+----------------+------------------------+-------------------+----------
x.3o. x. .. ♦ 6 0 | 6 3 0 0 0 | 2 3 0 0 0 0 0 0 0 | 8 * * * * * * * | 1 1 0 0 0
x. .. x.8/3o. ♦ 16 0 | 8 16 0 0 0 | 0 8 2 0 0 0 0 0 0 | * 3 * * * * * * | 1 0 1 0 0
xo3ox .. ..&#x ♦ 3 3 | 3 0 6 3 0 | 1 0 0 3 3 0 1 0 0 | * * 8 * * * * * | 0 2 0 0 0
xo .. xx ..&#x ♦ 4 2 | 2 2 4 0 1 | 0 1 0 2 0 2 0 0 0 | * * * 24 * * * * | 0 1 1 0 0
.. ox xx ..&#x ♦ 2 4 | 0 1 4 2 2 | 0 0 0 0 2 2 0 1 0 | * * * * 24 * * * | 0 1 0 1 0
.. .. xx8/3oo&#x ♦ 8 8 | 0 8 8 0 8 | 0 0 1 0 0 8 0 0 1 | * * * * * 6 * * | 0 0 1 1 0
.o3.x .x .. ♦ 0 6 | 0 0 0 6 3 | 0 0 0 0 0 0 2 3 0 | * * * * * * 8 * | 0 1 0 0 1
.. .x .x8/3.o ♦ 0 16 | 0 0 0 8 16 | 0 0 0 0 0 0 0 8 2 | * * * * * * * 3 | 0 0 0 1 1
-----------------+-------+----------------+------------------------+-------------------+----------
x.3o. x.8/3o. ♦ 24 0 | 24 24 0 0 0 | 8 24 3 0 0 0 0 0 0 | 8 3 0 0 0 0 0 0 | 1 * * * *
xo3ox xx ..&#x ♦ 6 6 | 6 6 6 6 6 | 2 3 0 6 6 6 2 3 0 | 1 0 2 3 3 0 1 0 | * 8 * * *
xo .. xx8/3oo&#x ♦ 16 8 | 8 16 16 0 8 | 0 8 2 8 0 16 0 0 1 | 0 1 0 8 0 2 0 0 | * * 3 * *
.. ox xx8/3oo&#x ♦ 8 16 | 0 8 16 8 16 | 0 0 1 0 8 16 0 8 2 | 0 0 0 0 8 2 0 1 | * * * 3 *
.o3.x .x8/3.o ♦ 0 24 | 0 0 0 24 24 | 0 0 0 0 0 0 8 24 3 | 0 0 0 0 0 0 8 3 | * * * * 1
© 2004-2024 | top of page |