Acronym squobcupe
Name square orthobicupola prism,
J28 prism
Circumradius ...
Lace city
in approx. ASCII-art
      o x      o x      
                        
                        
o x   q x      q x   o x
                        
                        
                        
                        
o x   q x      q x   o x
                        
                        
      o x      o x      
      x x      x x      
                        
                        
x x   w x      w x   x x
                        
                        
      x x      x x      
Coordinates
  • (1/2, 1/sqrt(2); 1/2, 1/2)       & all changes of sign
  • (1/2, 0; 1/2, (1+sqrt(2))/2)   & all permutations within last 2 coords, all changes of sign
Face vector 32, 80, 68, 20
Confer
uniform relative:
ope   sircope   sodip  
general polytopal classes:
CRF   partial Stott expansions  

This CRF can be obtained from sircope by partial Stott contraction only within a single axial direction. In fact it just withdraws an equatorial sodip.


Incidence matrix according to Dynkin symbol

oq xx xx4xo&#zx

o. o. o.4o.     | 16  * | 1 1 1  2 0  0 | 1 1  2  2  2 0 0 | 1 2 2 0
.o .o .o4.o     |  * 16 | 0 0 0  2 1  2 | 0 0  2  2  1 2 1 | 1 2 1 1
----------------+-------+---------------+------------------+--------
.. x. .. ..     |  2  0 | 8 * *  * *  * | 1 1  2  0  0 0 0 | 0 2 2 0
.. .. x. ..     |  2  0 | * 8 *  * *  * | 1 0  0  2  0 0 0 | 1 2 0 0
.. .. .. x.     |  2  0 | * * 8  * *  * | 0 1  0  0  2 0 0 | 1 0 2 0
oo oo oo4oo&#x  |  1  1 | * * * 32 *  * | 0 0  1  1  1 0 0 | 1 1 1 0
.. .x .. ..     |  0  2 | * * *  * 8  * | 0 0  2  0  0 2 0 | 0 2 1 1
.. .. .x ..     |  0  2 | * * *  * * 16 | 0 0  0  1  0 1 1 | 1 1 0 1
----------------+-------+---------------+------------------+--------
.. x. x. ..     |  4  0 | 2 2 0  0 0  0 | 4 *  *  *  * * * | 0 2 0 0
.. x. .. x.     |  4  0 | 2 0 2  0 0  0 | * 4  *  *  * * * | 0 0 2 0
.. xx .. ..&#x  |  2  2 | 1 0 0  2 1  0 | * * 16  *  * * * | 0 1 1 0
.. .. xx ..&#x  |  2  2 | 0 1 0  2 0  1 | * *  * 16  * * * | 1 1 0 0
.. .. .. xo&#x  |  2  1 | 0 0 1  2 0  0 | * *  *  * 16 * * | 1 0 1 0
.. .x .x ..     |  0  4 | 0 0 0  0 2  2 | * *  *  *  * 8 * | 0 1 0 1
.. .. .x4.o     |  0  4 | 0 0 0  0 0  4 | * *  *  *  * * 4 | 1 0 0 1
----------------+-------+---------------+------------------+--------
oq .. xx4xo&#zx   8  8 | 0 4 4 16 0  8 | 0 0  0  8  8 0 2 | 2 * * *
.. xx xx ..&#x    4  4 | 2 2 0  4 2  2 | 1 0  2  2  0 1 0 | * 8 * *
.. xx .. xo&#x    4  2 | 2 0 2  4 1  0 | 0 1  2  0  2 0 0 | * * 8 *
.. .x .x4.o       0  8 | 0 0 0  0 4  8 | 0 0  0  0  0 4 2 | * * * 2

(qo)(qo) (ox)(ox)4(xx)(xx)&#(zx)

(o.)(..) (o.)(..)4(o.)(..)       | 8 * * * | 2  2 1 0 0 0 0  0 0 0 | 1 1 2 2  2 0 0 0 0 0 | 1 1 2 1 0
(.o)(..) (.o)(..)4(.o)(..)       | * 8 * * | 0  2 0 1 1 1 0  0 0 0 | 0 2 2 0  2 1 1 0 0 0 | 1 2 2 0 0
(..)(o.) (..)(o.)4(..)(o.)       | * * 8 * | 0  0 1 0 0 0 2  2 0 0 | 0 0 0 2  2 0 0 1 1 2 | 0 1 2 1 1
(..)(.o) (..)(.o)4(..)(.o)       | * * * 8 | 0  0 0 0 0 1 0  2 1 1 | 0 0 0 0  2 1 1 0 2 2 | 0 2 2 0 1
---------------------------------+---------+-----------------------+----------------------+----------
(..)(..) (..)(..) (x.)(..)       | 2 0 0 0 | 8  * * * * * *  * * * | 1 0 1 1  0 0 0 0 0 0 | 1 0 1 1 0
(oo)(..) (oo)(..)4(oo)(..)&#x    | 1 1 0 0 | * 16 * * * * *  * * * | 0 1 1 0  1 0 0 0 0 0 | 1 1 1 0 0
(o.)(o.) (o.)(o.)4(o.)(o.)&#x    | 1 0 1 0 | *  * 8 * * * *  * * * | 0 0 0 2  2 0 0 0 0 0 | 0 1 2 1 0
(..)(..) (.x)(..) (..)(..)       | 0 2 0 0 | *  * * 4 * * *  * * * | 0 2 0 0  0 1 0 0 0 0 | 1 2 0 0 0
(..)(..) (..)(..) (.x)(..)       | 0 2 0 0 | *  * * * 4 * *  * * * | 0 0 2 0  0 0 1 0 0 0 | 1 0 2 0 0
(.o)(.o) (.o)(.o)4(.o)(.o)&#x    | 0 1 0 1 | *  * * * * 8 *  * * * | 0 0 0 0  2 1 1 0 0 0 | 0 2 2 0 0
(..)(..) (..)(..) (..)(x.)       | 0 0 2 0 | *  * * * * * 8  * * * | 0 0 0 1  0 0 0 1 0 1 | 0 0 1 1 1
(..)(oo) (..)(oo)4(..)(oo)&#x    | 0 0 1 1 | *  * * * * * * 16 * * | 0 0 0 0  1 0 0 0 1 1 | 0 1 1 0 1
(..)(..) (..)(.x) (..)(..)       | 0 0 0 2 | *  * * * * * *  * 4 * | 0 0 0 0  0 1 0 0 2 0 | 0 2 0 0 1
(..)(..) (..)(..) (..)(.x)       | 0 0 0 2 | *  * * * * * *  * * 4 | 0 0 0 0  0 0 1 0 0 2 | 0 0 2 0 1
---------------------------------+---------+-----------------------+----------------------+----------
(..)(..) (o.)(..)4(x.)(..)       | 4 0 0 0 | 4  0 0 0 0 0 0  0 0 0 | 2 * * *  * * * * * * | 1 0 0 1 0
(..)(..) (ox)(..) (..)(..)&#x    | 1 2 0 0 | 0  2 0 1 0 0 0  0 0 0 | * 8 * *  * * * * * * | 1 1 0 0 0
(..)(..) (..)(..) (xx)(..)&#x    | 2 2 0 0 | 1  2 0 0 1 0 0  0 0 0 | * * 8 *  * * * * * * | 1 0 1 0 0
(..)(..) (..)(..) (x.)(x.)&#x    | 2 0 2 0 | 1  0 2 0 0 0 1  0 0 0 | * * * 8  * * * * * * | 0 0 1 1 0
(oo)(oo) (oo)(oo)4(oo)(oo)&#(zx) | 1 1 1 1 | 0  1 1 0 0 1 0  1 0 0 | * * * * 16 * * * * * | 0 1 1 0 0
(..)(..) (.x)(.x) (..)(..)&#x    | 0 2 0 2 | 0  0 0 1 0 2 0  0 1 0 | * * * *  * 4 * * * * | 0 2 0 0 0
(..)(..) (..)(..) (.x)(.x)&#x    | 0 2 0 2 | 0  0 0 0 1 2 0  0 0 1 | * * * *  * * 4 * * * | 0 0 2 0 0
(..)(..) (..)(o.)4(..)(x.)       | 0 0 4 0 | 0  0 0 0 0 0 4  0 0 0 | * * * *  * * * 2 * * | 0 0 0 1 1
(..)(..) (..)(ox) (..)(..)&#x    | 0 0 1 2 | 0  0 0 0 0 0 0  2 1 0 | * * * *  * * * * 8 * | 0 1 0 0 1
(..)(..) (..)(..) (..)(xx)&#x    | 0 0 2 2 | 0  0 0 0 0 0 1  2 0 1 | * * * *  * * * * * 8 | 0 0 1 0 1
---------------------------------+---------+-----------------------+----------------------+----------
(qo)(..) (ox)(..)4(xx)(..)&#zx    8 8 0 0 | 8 16 0 4 4 0 0  0 0 0 | 2 8 8 0  0 0 0 0 0 0 | 1 * * * *
(..)(..) (ox)(ox) (..)(..)&#xr    1 2 1 2 | 0  2 1 1 0 2 0  2 1 0 | 0 1 0 0  2 1 0 0 1 0 | * 8 * * *	cycle (ABDC)
(..)(..) (..)(..) (xx)(xx)&#xr    2 2 2 2 | 1  2 2 0 1 2 1  2 0 1 | 0 0 1 1  2 0 1 0 0 1 | * * 8 * *	cycle (ABDC)
(..)(..) (o.)(o.)4(x.)(x.)&#x     4 0 4 0 | 4  0 4 0 0 0 4  0 0 0 | 1 0 0 4  0 0 0 1 0 0 | * * * 2 *
(..)(qo) (..)(ox)4(..)(xx)&#zx    0 0 8 8 | 0  0 0 0 0 0 8 16 4 4 | 0 0 0 0  0 0 0 2 8 8 | * * * * 1

© 2004-2025
top of page