Acronym | squatic |
Name | square - truncated-cube duoprism |
Circumradius | sqrt(2)+1/2 = 1.914214 |
Volume | (21+14 sqrt(2))/3 = 13.599663 |
Face vector | 96, 240, 224, 96, 18 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x4o o3x4x . . . . . | 96 | 2 2 1 | 1 4 2 1 2 | 2 1 2 4 1 | 1 2 2 ----------+----+----------+----------------+---------------+------ x . . . . | 2 | 96 * * | 1 2 1 0 0 | 2 1 1 2 0 | 1 2 1 . . . x . | 2 | * 96 * | 0 2 0 1 1 | 1 0 2 2 1 | 1 1 2 . . . . x | 2 | * * 48 | 0 0 2 0 2 | 0 1 0 4 1 | 0 2 2 ----------+----+----------+----------------+---------------+------ x4o . . . | 4 | 4 0 0 | 24 * * * * | 2 1 0 0 0 | 1 2 0 x . . x . | 4 | 2 2 0 | * 96 * * * | 1 0 1 1 0 | 1 1 1 x . . . x | 4 | 2 0 2 | * * 48 * * | 0 1 0 2 0 | 0 2 1 . . o3x . | 3 | 0 3 0 | * * * 32 * | 0 0 2 0 1 | 1 0 2 . . . x4x | 8 | 0 4 4 | * * * * 24 | 0 0 0 2 1 | 0 1 2 ----------+----+----------+----------------+---------------+------ x4o . x . ♦ 8 | 8 4 0 | 2 4 0 0 0 | 24 * * * * | 1 1 0 x4o . . x ♦ 8 | 8 0 4 | 2 0 4 0 0 | * 12 * * * | 0 2 0 x . o3x . ♦ 6 | 3 6 0 | 0 3 0 2 0 | * * 32 * * | 1 0 1 x . . x4x ♦ 16 | 8 8 8 | 0 4 4 0 2 | * * * 24 * | 0 1 1 . . o3x4x ♦ 24 | 0 24 12 | 0 0 0 8 6 | * * * * 4 | 0 0 2 ----------+----+----------+----------------+---------------+------ x4o o3x . ♦ 12 | 12 12 0 | 3 12 0 4 0 | 3 0 4 0 0 | 8 * * x4o . x4x ♦ 32 | 32 16 16 | 8 16 16 0 4 | 4 4 0 4 0 | * 6 * x . o3x4x ♦ 48 | 24 48 24 | 0 24 12 16 12 | 0 0 8 6 2 | * * 4
x x o3x4x . . . . . | 96 | 1 1 2 1 | 1 2 1 2 1 1 2 | 2 1 1 2 1 2 1 | 1 2 1 1 ----------+----+-------------+----------------------+---------------------+-------- x . . . . | 2 | 48 * * * | 1 2 1 0 0 0 0 | 2 1 1 2 0 0 0 | 1 2 1 0 . x . . . | 2 | * 48 * * | 1 0 0 2 1 0 0 | 2 1 0 0 1 2 0 | 1 2 0 1 . . . x . | 2 | * * 96 * | 0 1 0 1 0 1 1 | 1 0 1 1 1 1 1 | 1 1 1 1 . . . . x | 2 | * * * 48 | 0 0 1 0 1 0 2 | 0 1 0 2 0 2 1 | 0 2 1 1 ----------+----+-------------+----------------------+---------------------+-------- x x . . . | 4 | 2 2 0 0 | 24 * * * * * * | 2 1 0 0 0 0 0 | 1 2 0 0 x . . x . | 4 | 2 0 2 0 | * 48 * * * * * | 1 0 1 1 0 0 0 | 1 1 1 0 x . . . x | 4 | 2 0 0 2 | * * 24 * * * * | 0 1 0 2 0 0 0 | 0 2 1 0 . x . x . | 4 | 0 2 2 0 | * * * 48 * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . x . . x | 4 | 0 2 0 2 | * * * * 24 * * | 0 1 0 0 0 2 0 | 0 2 0 1 . . o3x . | 3 | 0 0 3 0 | * * * * * 32 * | 0 0 1 0 1 0 1 | 1 0 1 1 . . . x4x | 8 | 0 0 4 4 | * * * * * * 24 | 0 0 0 1 0 1 1 | 0 1 1 1 ----------+----+-------------+----------------------+---------------------+-------- x x . x . ♦ 8 | 4 4 4 0 | 2 2 0 2 0 0 0 | 24 * * * * * * | 1 1 0 0 x x . . x ♦ 8 | 4 4 0 4 | 2 0 2 0 2 0 0 | * 12 * * * * * | 0 2 0 0 x . o3x . ♦ 6 | 3 0 6 0 | 0 3 0 0 0 2 0 | * * 16 * * * * | 1 0 1 0 x . . x4x ♦ 16 | 8 0 8 8 | 0 4 4 0 0 0 2 | * * * 12 * * * | 0 1 1 0 . x o3x . ♦ 6 | 0 3 6 0 | 0 0 0 3 0 2 0 | * * * * 16 * * | 1 0 0 1 . x . x4x ♦ 16 | 0 8 8 8 | 0 0 0 4 4 0 2 | * * * * * 12 * | 0 1 0 1 . . o3x4x ♦ 24 | 0 0 24 12 | 0 0 0 0 0 8 6 | * * * * * * 4 | 0 0 1 1 ----------+----+-------------+----------------------+---------------------+-------- x x o3x . ♦ 12 | 6 6 12 0 | 3 6 0 6 0 4 0 | 3 0 2 0 2 0 0 | 8 * * * x x . x4x ♦ 32 | 16 16 16 16 | 8 8 8 8 8 0 4 | 4 4 0 2 0 2 0 | * 6 * * x . o3x4x ♦ 48 | 24 0 48 24 | 0 24 12 0 0 16 12 | 0 0 8 6 0 0 2 | * * 2 * . x o3x4x ♦ 48 | 0 24 48 24 | 0 0 0 24 12 16 12 | 0 0 0 0 8 6 2 | * * * 2
© 2004-2025 | top of page |