Acronym squatic
Name square - truncated-cube duoprism
Circumradius sqrt(2)+1/2 = 1.914214
Volume (21+14 sqrt(2))/3 = 13.599663
Face vector 96, 240, 224, 96, 18
Confer
more general:
n,tic-dip  
general polytopal classes:
Wythoffian polytera   segmentotera  
External
links
polytopewiki  

Incidence matrix according to Dynkin symbol

x4o o3x4x

. . . . . | 96 |  2  2  1 |  1  4  2  1  2 |  2  1  2  4 1 | 1 2 2
----------+----+----------+----------------+---------------+------
x . . . . |  2 | 96  *  * |  1  2  1  0  0 |  2  1  1  2 0 | 1 2 1
. . . x . |  2 |  * 96  * |  0  2  0  1  1 |  1  0  2  2 1 | 1 1 2
. . . . x |  2 |  *  * 48 |  0  0  2  0  2 |  0  1  0  4 1 | 0 2 2
----------+----+----------+----------------+---------------+------
x4o . . . |  4 |  4  0  0 | 24  *  *  *  * |  2  1  0  0 0 | 1 2 0
x . . x . |  4 |  2  2  0 |  * 96  *  *  * |  1  0  1  1 0 | 1 1 1
x . . . x |  4 |  2  0  2 |  *  * 48  *  * |  0  1  0  2 0 | 0 2 1
. . o3x . |  3 |  0  3  0 |  *  *  * 32  * |  0  0  2  0 1 | 1 0 2
. . . x4x |  8 |  0  4  4 |  *  *  *  * 24 |  0  0  0  2 1 | 0 1 2
----------+----+----------+----------------+---------------+------
x4o . x .   8 |  8  4  0 |  2  4  0  0  0 | 24  *  *  * * | 1 1 0
x4o . . x   8 |  8  0  4 |  2  0  4  0  0 |  * 12  *  * * | 0 2 0
x . o3x .   6 |  3  6  0 |  0  3  0  2  0 |  *  * 32  * * | 1 0 1
x . . x4x  16 |  8  8  8 |  0  4  4  0  2 |  *  *  * 24 * | 0 1 1
. . o3x4x  24 |  0 24 12 |  0  0  0  8  6 |  *  *  *  * 4 | 0 0 2
----------+----+----------+----------------+---------------+------
x4o o3x .  12 | 12 12  0 |  3 12  0  4  0 |  3  0  4  0 0 | 8 * *
x4o . x4x  32 | 32 16 16 |  8 16 16  0  4 |  4  4  0  4 0 | * 6 *
x . o3x4x  48 | 24 48 24 |  0 24 12 16 12 |  0  0  8  6 2 | * * 4

x x o3x4x

. . . . . | 96 |  1  1  2  1 |  1  2  1  2  1  1  2 |  2  1  1  2  1  2 1 | 1 2 1 1
----------+----+-------------+----------------------+---------------------+--------
x . . . . |  2 | 48  *  *  * |  1  2  1  0  0  0  0 |  2  1  1  2  0  0 0 | 1 2 1 0
. x . . . |  2 |  * 48  *  * |  1  0  0  2  1  0  0 |  2  1  0  0  1  2 0 | 1 2 0 1
. . . x . |  2 |  *  * 96  * |  0  1  0  1  0  1  1 |  1  0  1  1  1  1 1 | 1 1 1 1
. . . . x |  2 |  *  *  * 48 |  0  0  1  0  1  0  2 |  0  1  0  2  0  2 1 | 0 2 1 1
----------+----+-------------+----------------------+---------------------+--------
x x . . . |  4 |  2  2  0  0 | 24  *  *  *  *  *  * |  2  1  0  0  0  0 0 | 1 2 0 0
x . . x . |  4 |  2  0  2  0 |  * 48  *  *  *  *  * |  1  0  1  1  0  0 0 | 1 1 1 0
x . . . x |  4 |  2  0  0  2 |  *  * 24  *  *  *  * |  0  1  0  2  0  0 0 | 0 2 1 0
. x . x . |  4 |  0  2  2  0 |  *  *  * 48  *  *  * |  1  0  0  0  1  1 0 | 1 1 0 1
. x . . x |  4 |  0  2  0  2 |  *  *  *  * 24  *  * |  0  1  0  0  0  2 0 | 0 2 0 1
. . o3x . |  3 |  0  0  3  0 |  *  *  *  *  * 32  * |  0  0  1  0  1  0 1 | 1 0 1 1
. . . x4x |  8 |  0  0  4  4 |  *  *  *  *  *  * 24 |  0  0  0  1  0  1 1 | 0 1 1 1
----------+----+-------------+----------------------+---------------------+--------
x x . x .   8 |  4  4  4  0 |  2  2  0  2  0  0  0 | 24  *  *  *  *  * * | 1 1 0 0
x x . . x   8 |  4  4  0  4 |  2  0  2  0  2  0  0 |  * 12  *  *  *  * * | 0 2 0 0
x . o3x .   6 |  3  0  6  0 |  0  3  0  0  0  2  0 |  *  * 16  *  *  * * | 1 0 1 0
x . . x4x  16 |  8  0  8  8 |  0  4  4  0  0  0  2 |  *  *  * 12  *  * * | 0 1 1 0
. x o3x .   6 |  0  3  6  0 |  0  0  0  3  0  2  0 |  *  *  *  * 16  * * | 1 0 0 1
. x . x4x  16 |  0  8  8  8 |  0  0  0  4  4  0  2 |  *  *  *  *  * 12 * | 0 1 0 1
. . o3x4x  24 |  0  0 24 12 |  0  0  0  0  0  8  6 |  *  *  *  *  *  * 4 | 0 0 1 1
----------+----+-------------+----------------------+---------------------+--------
x x o3x .  12 |  6  6 12  0 |  3  6  0  6  0  4  0 |  3  0  2  0  2  0 0 | 8 * * *
x x . x4x  32 | 16 16 16 16 |  8  8  8  8  8  0  4 |  4  4  0  2  0  2 0 | * 6 * *
x . o3x4x  48 | 24  0 48 24 |  0 24 12  0  0 16 12 |  0  0  8  6  0  0 2 | * * 2 *
. x o3x4x  48 |  0 24 48 24 |  0  0  0 24 12 16 12 |  0  0  0  0  8  6 2 | * * * 2

© 2004-2025
top of page