Acronym squarit Name square - rectified-tesseract duoprism Circumradius sqrt(2) = 1.414214 Confer n,rit-dip

Incidence matrix according to Dynkin symbol

```x4o o3o3x4o

. . . . . . | 128 |   2   6 |  1  12   6  3 |  6  12  6  2  3 |  6  3  4  6 1 |  2 3 2
------------+-----+---------+---------------+-----------------+---------------+-------
x . . . . . |   2 | 128   * |  1   6   0  0 |  6   6  3  0  0 |  6  3  2  3 0 |  2 3 1
. . . . x . |   2 |   * 384 |  0   2   2  1 |  1   4  2  1  2 |  2  1  2  4 1 |  1 2 2
------------+-----+---------+---------------+-----------------+---------------+-------
x4o . . . . |   4 |   4   0 | 32   *   *  * ♦  6   0  0  0  0 |  6  3  0  0 0 |  2 3 0
x . . . x . |   4 |   2   2 |  * 384   *  * |  1   2  1  0  0 |  2  1  1  2 0 |  1 2 1
. . . o3x . |   3 |   0   3 |  *   * 256  * |  0   2  0  1  1 |  1  0  2  2 1 |  1 1 2
. . . . x4o |   4 |   0   4 |  *   *   * 96 |  0   0  2  0  2 |  0  1  0  4 1 |  0 2 2
------------+-----+---------+---------------+-----------------+---------------+-------
x4o . . x . ♦   8 |   8   4 |  2   4   0  0 | 96   *  *  *  * |  2  1  0  0 0 |  1 2 0
x . . o3x . ♦   6 |   3   6 |  0   3   2  0 |  * 256  *  *  * |  1  0  1  1 0 |  1 1 1
x . . . x4o ♦   8 |   4   8 |  0   4   0  2 |  *   * 96  *  * |  0  1  0  2 0 |  0 2 1
. . o3o3x . ♦   4 |   0   6 |  0   0   4  0 |  *   *  * 64  * |  0  0  2  0 1 |  1 0 2
. . . o3x4o ♦  12 |   0  24 |  0   0   8  6 |  *   *  *  * 32 |  0  0  0  2 1 |  0 1 2
------------+-----+---------+---------------+-----------------+---------------+-------
x4o . o3x . ♦  12 |  12  12 |  3  12   4  0 |  3   4  0  0  0 | 64  *  *  * * |  1 1 0
x4o . . x4o ♦  16 |  16  16 |  4  16   0  4 |  4   0  4  0  0 |  * 24  *  * * |  0 2 0
x . o3o3x . ♦   8 |   4  12 |  0   6   8  0 |  0   4  0  2  0 |  *  * 64  * * |  1 0 1
x . . o3x4o ♦  24 |  12  48 |  0  24  16 12 |  0   8  6  0  2 |  *  *  * 32 * |  0 1 1
. . o3o3x4o ♦  32 |   0  96 |  0   0  64 24 |  0   0  0 16  8 |  *  *  *  * 4 |  0 0 2
------------+-----+---------+---------------+-----------------+---------------+-------
x4o o3o3x . ♦  16 |  16  24 |  4  24  16  0 |  6  16  0  4  0 |  4  0  4  0 0 | 16 * *
x4o . o3x4o ♦  48 |  48  96 | 12  96  32 24 | 24  32 24  0  4 |  8  6  0  4 0 |  * 8 *
x . o3o3x4o ♦  64 |  32 192 |  0  96 128 48 |  0  64 24 32 16 |  0  0 16  8 2 |  * * 4
```

```x x o3o3x4o

. . . . . . | 128 |  1  1   6 |  1   6   6   6  3 |  6   6  3   6  3  2  3 |  6  3  2  3  2  3 1 |  2 3 1 1
------------+-----+-----------+-------------------+------------------------+---------------------+---------
x . . . . . |   2 | 64  *   * |  1   6   0   0  0 |  6   6  3   0  0  0  0 |  6  3  2  3  0  0 0 |  2 3 1 0
. x . . . . |   2 |  * 64   * |  1   0   6   0  0 |  6   0  0   6  3  0  0 |  6  3  0  0  2  3 0 |  2 3 0 1
. . . . x . |   2 |  *  * 384 |  0   1   1   2  1 |  1   2  1   2  1  1  2 |  2  1  1  2  1  2 1 |  1 2 1 1
------------+-----+-----------+-------------------+------------------------+---------------------+---------
x x . . . . |   4 |  2  2   0 | 32   *   *   *  * ♦  6   0  0   0  0  0  0 |  6  3  0  0  0  0 0 |  2 3 0 0
x . . . x . |   4 |  2  0   2 |  * 192   *   *  * |  1   2  1   0  0  0  0 |  2  1  1  2  0  0 0 |  1 2 1 0
. x . . x . |   4 |  0  2   2 |  *   * 192   *  * |  1   0  0   2  1  0  0 |  2  1  0  0  1  2 0 |  1 2 0 1
. . . o3x . |   3 |  0  0   3 |  *   *   * 256  * |  0   1  0   1  0  1  1 |  1  0  1  1  1  1 1 |  1 1 1 1
. . . . x4o |   4 |  0  0   4 |  *   *   *   * 96 |  0   0  1   0  1  0  2 |  0  1  0  2  0  2 1 |  0 2 1 1
------------+-----+-----------+-------------------+------------------------+---------------------+---------
x x . . x . ♦   8 |  4  4   4 |  2   2   2   0  0 | 96   *  *   *  *  *  * |  2  1  0  0  0  0 0 |  1 2 0 0
x . . o3x . ♦   6 |  3  0   6 |  0   3   0   2  0 |  * 128  *   *  *  *  * |  1  0  1  1  0  0 0 |  1 1 1 0
x . . . x4o ♦   8 |  4  0   8 |  0   4   0   0  2 |  *   * 48   *  *  *  * |  0  1  0  2  0  0 0 |  0 2 1 0
. x . o3x . ♦   6 |  0  3   6 |  0   0   3   2  0 |  *   *  * 128  *  *  * |  1  0  0  0  1  1 0 |  1 1 0 1
. x . . x4o ♦   8 |  0  4   8 |  0   0   4   0  2 |  *   *  *   * 48  *  * |  0  1  0  0  0  2 0 |  0 2 0 1
. . o3o3x . ♦   4 |  0  0   6 |  0   0   0   4  0 |  *   *  *   *  * 64  * |  0  0  1  0  1  0 1 |  1 0 1 1
. . . o3x4o ♦  12 |  0  0  24 |  0   0   0   8  6 |  *   *  *   *  *  * 32 |  0  0  0  1  0  1 1 |  0 1 1 1
------------+-----+-----------+-------------------+------------------------+---------------------+---------
x x . o3x . ♦  12 |  6  6  12 |  3   6   6   4  0 |  3   2  0   2  0  0  0 | 64  *  *  *  *  * * |  1 1 0 0
x x . . x4o ♦  16 |  8  8  16 |  4   8   8   0  4 |  4   0  2   0  2  0  0 |  * 24  *  *  *  * * |  0 2 0 0
x . o3o3x . ♦   8 |  4  0  12 |  0   6   0   8  0 |  0   4  0   0  0  2  0 |  *  * 32  *  *  * * |  1 0 1 0
x . . o3x4o ♦  24 | 12  0  48 |  0  24   0  16 12 |  0   8  6   0  0  0  2 |  *  *  * 16  *  * * |  0 1 1 0
. x o3o3x . ♦   8 |  0  4  12 |  0   0   6   8  0 |  0   0  0   4  0  2  0 |  *  *  *  * 32  * * |  1 0 0 1
. x . o3x4o ♦  24 |  0 12  48 |  0   0  24  16 12 |  0   0  0   8  6  0  2 |  *  *  *  *  * 16 * |  0 1 0 1
. . o3o3x4o ♦  32 |  0  0  96 |  0   0   0  64 24 |  0   0  0   0  0 16  8 |  *  *  *  *  *  * 4 |  0 0 1 1
------------+-----+-----------+-------------------+------------------------+---------------------+---------
x x o3o3x . ♦  16 |  8  8  24 |  4  12  12  16  0 |  6   8  0   8  0  4  0 |  4  0  2  0  2  0 0 | 16 * * *
x x . o3x4o ♦  48 | 24 24  96 | 12  48  48  32 24 | 24  16 12  16 12  0  4 |  8  6  0  2  0  2 0 |  * 8 * *
x . o3o3x4o ♦  64 | 32  0 192 |  0  96   0 128 48 |  0  64 24   0  0 32 16 |  0  0 16  8  0  0 2 |  * * 2 *
. x o3o3x4o ♦  64 |  0 32 192 |  0   0  96 128 48 |  0   0  0  64 24 32 16 |  0  0  0  0 16  8 2 |  * * * 2
```