Acronym siphatit
Name small diprismatodemitesseractic tetracomb,
steric tesseractic tetracomb
Confer
general polytopal classes:
partial Stott expansions  
External
links
polytopewiki

Incidence matrix according to Dynkin symbol

x3o3o *b3o4x   (N → ∞)

. . .    . . | 16N |   6   4 |  12  12   6 |   4   4  12   6  4 |  1  4 4 1
-------------+-----+---------+-------------+--------------------+----------
x . .    . . |   2 | 48N   * |   4   2   0 |   2   2   4   1  0 |  1  2 2 0
. . .    . x |   2 |   * 32N |   0   3   3 |   0   0   3   3  3 |  0  1 3 1
-------------+-----+---------+-------------+--------------------+----------
x3o .    . . |   3 |   3   0 | 64N   *   * |   1   1   1   0  0 |  1  1 1 0
x . .    . x |   4 |   2   2 |   * 48N   * |   0   0   2   1  0 |  0  1 2 0
. . .    o4x |   4 |   0   4 |   *   * 24N |   0   0   0   1  2 |  0  0 2 1
-------------+-----+---------+-------------+--------------------+----------
x3o3o    . .    4 |   6   0 |   4   0   0 | 16N   *   *   *  * |  1  1 0 0
x3o . *b3o .    4 |   6   0 |   4   0   0 |   * 16N   *   *  * |  1  0 1 0
x3o .    . x    6 |   6   3 |   2   3   0 |   *   * 32N   *  * |  0  1 1 0
x . .    o4x    8 |   4   8 |   0   4   2 |   *   *   * 12N  * |  0  0 2 0
. o . *b3o4x    8 |   0  12 |   0   0   6 |   *   *   *   * 8N |  0  0 1 1
-------------+-----+---------+-------------+--------------------+----------
x3o3o *b3o .    8 |  24   0 |  32   0   0 |   8   8   0   0  0 | 2N  * * *
x3o3o    . x    8 |  12   4 |   8   6   0 |   2   0   4   0  0 |  * 8N * *
x3o . *b3o4x   64 |  96  96 |  64  96  48 |   0  16  32  24  8 |  *  * N *
. o3o *b3o4x   16 |   0  32 |   0   0  24 |   0   0   0   0  8 |  *  * * N

snubbed forms: x3o3o *b3o4s

s4o3o3o4x   (N → ∞)

demi( . . . . . ) | 16N |   4   6 |   6  12  12 |  4   4   6   4  12 | 1  1  4 4
------------------+-----+---------+-------------+--------------------+----------
demi( . . . . x ) |   2 | 32N   * |   3   3   0 |  3   0   3   0   3 | 1  0  1 3
      s4o . . .   |   2 |   * 48N |   0   2   4 |  0   2   1   2   4 | 0  1  2 2
------------------+-----+---------+-------------+--------------------+----------
demi( . . . o4x ) |   4 |   4   0 | 24N   *   * |  2   0   1   0   0 | 1  0  0 2
      s4o . 2 x   |   4 |   2   2 |   * 48N   * |  0   0   1   0   2 | 0  0  1 2
sefa( s4o3o . . ) |   3 |   0   3 |   *   * 64N |  0   1   0   1   1 | 0  1  1 1
------------------+-----+---------+-------------+--------------------+----------
demi( . . o3o4x )    8 |  12   0 |   6   0   0 | 8N   *   *   *   * | 1  0  0 1
      s4o3o . .      4 |   0   6 |   0   0   4 |  * 16N   *   *   * | 0  1  1 0
      s4o 2 o4x      8 |   8   4 |   2   4   0 |  *   * 12N   *   * | 0  0  0 2
sefa( s4o3o3o . )    4 |   0   6 |   0   0   4 |  *   *   * 16N   * | 0  1  0 1
sefa( s4o3o 2 x )    6 |   3   6 |   0   3   2 |  *   *   *   * 32N | 0  0  1 1
------------------+-----+---------+-------------+--------------------+----------
demi( . o3o3o4x )   16 |  32   0 |  24   0   0 |  8   0   0   0   0 | N  *  * *
      s4o3o3o .      8 |   0  24 |   0   0  32 |  0   8   0   8   0 | * 2N  * *
      s4o3o 2 x      8 |   4  12 |   0   6   8 |  0   2   0   0   4 | *  * 8N *
sefa( s4o3o3o4x )   64 |  96  96 |  48  96  64 |  8   0  24  16  32 | *  *  * N

starting figure: x4o3o3o4x

© 2004-2024
top of page