Acronym | rittit |
Name |
rectified tesseractic tetracomb, quartertesseractic tetracomb |
Confer |
|
External links |
This honeycomb also can be described as s4o3o3o4s', i.e. as sequential applications of alternated facetings, according to x4o3o3o4x → s4o3o3o4x (= x3o3o *b3o4x) → x3o3o *b3o4s' (cf. below).
Incidence matrix according to Dynkin symbol
o4x3o3o4o (N → ∞) . . . . . | 4N | 12 | 6 24 | 12 16 | 8 2 ----------+----+-----+--------+--------+---- . x . . . | 2 | 24N | 1 4 | 4 4 | 4 1 ----------+----+-----+--------+--------+---- o4x . . . | 4 | 4 | 6N * | 4 0 | 4 0 . x3o . . | 3 | 3 | * 32N | 1 2 | 2 1 ----------+----+-----+--------+--------+---- o4x3o . . ♦ 12 | 24 | 6 8 | 4N * | 2 0 . x3o3o . ♦ 4 | 6 | 0 4 | * 16N | 1 1 ----------+----+-----+--------+--------+---- o4x3o3o . ♦ 32 | 96 | 24 64 | 8 16 | N * . x3o3o4o ♦ 8 | 24 | 0 32 | 0 16 | * N
o3o3o *b3x4o (N → ∞) . . . . . | 8N | 12 | 24 6 | 8 8 12 | 2 4 4 -------------+----+-----+---------+------------+------- . . . x . | 2 | 48N | 4 1 | 2 2 4 | 1 2 2 -------------+----+-----+---------+------------+------- . o . *b3x . | 3 | 3 | 64N * | 1 1 1 | 1 1 1 . . . x4o | 4 | 4 | * 12N | 0 0 4 | 0 2 2 -------------+----+-----+---------+------------+------- o3o . *b3x . ♦ 4 | 6 | 4 0 | 16N * * | 1 1 0 . o3o *b3x . ♦ 4 | 6 | 4 0 | * 16N * | 1 0 1 . o . *b3x4o ♦ 12 | 24 | 8 6 | * * 8N | 0 1 1 -------------+----+-----+---------+------------+------- o3o3o *b3x . ♦ 8 | 24 | 32 0 | 8 8 0 | 2N * * o3o . *b3x4o ♦ 32 | 96 | 64 24 | 16 0 8 | * N * . o3o *b3x4o ♦ 32 | 96 | 64 24 | 0 16 8 | * * N
x3o3x *b3o4o (N → ∞) . . . . . | 8N | 6 6 | 12 6 12 | 12 8 8 | 8 1 1 -------------+----+---------+-------------+------------+------- x . . . . | 2 | 24N * | 4 1 0 | 4 4 0 | 4 1 0 . . x . . | 2 | * 24N | 0 1 4 | 4 0 4 | 4 0 1 -------------+----+---------+-------------+------------+------- x3o . . . | 3 | 3 0 | 32N * * | 1 2 0 | 2 1 0 x . x . . | 4 | 2 2 | * 12N * | 4 0 0 | 4 0 0 . o3x . . | 3 | 0 3 | * * 32N | 1 0 2 | 2 0 1 -------------+----+---------+-------------+------------+------- x3o3x . . ♦ 12 | 12 12 | 4 6 4 | 8N * * | 2 0 0 x3o . *b3o . ♦ 4 | 6 0 | 4 0 0 | * 16N * | 1 1 0 . o3x *b3o . ♦ 4 | 0 6 | 0 0 4 | * * 16N | 1 0 1 -------------+----+---------+-------------+------------+------- x3o3x *b3o . ♦ 32 | 48 48 | 32 24 32 | 8 8 8 | 2N * * x3o . *b3o4o ♦ 8 | 24 0 | 32 0 0 | 0 16 0 | * N * . o3x *b3o4o ♦ 8 | 0 24 | 0 0 32 | 0 0 16 | * * N
x3o3x *b3o *b3o (N → ∞) . . . . . | 8N | 6 6 | 12 6 12 | 12 4 4 4 4 | 4 4 1 1 ----------------+----+---------+-------------+----------------+-------- x . . . . | 2 | 24N * | 4 1 0 | 4 2 2 0 0 | 2 2 1 0 . . x . . | 2 | * 24N | 0 1 4 | 4 0 0 2 2 | 2 2 0 1 ----------------+----+---------+-------------+----------------+-------- x3o . . . | 3 | 3 0 | 32N * * | 1 1 1 0 0 | 1 1 1 0 x . x . . | 4 | 2 2 | * 12N * | 4 0 0 0 0 | 2 2 0 0 . o3x . . | 3 | 0 3 | * * 32N | 1 0 0 1 1 | 1 1 0 1 ----------------+----+---------+-------------+----------------+-------- x3o3x . . ♦ 12 | 12 12 | 4 6 4 | 8N * * * * | 1 1 0 0 x3o . *b3o . ♦ 4 | 6 0 | 4 0 0 | * 8N * * * | 1 0 1 0 x3o . . *b3o ♦ 4 | 6 0 | 4 0 0 | * * 8N * * | 0 1 1 0 . o3x *b3o . ♦ 4 | 0 6 | 0 0 4 | * * * 8N * | 1 0 0 1 . o3x . *b3o ♦ 4 | 0 6 | 0 0 4 | * * * * 8N | 0 1 0 1 ----------------+----+---------+-------------+----------------+-------- x3o3x *b3o . ♦ 32 | 48 48 | 32 24 32 | 8 8 0 8 0 | N * * * x3o3x . *b3o ♦ 32 | 48 48 | 32 24 32 | 8 0 8 0 8 | * N * * x3o . *b3o *b3o ♦ 8 | 24 0 | 32 0 0 | 0 8 8 0 0 | * * N * . o3x *b3o *b3o ♦ 8 | 0 24 | 0 0 32 | 0 0 0 8 8 | * * * N
x3o3o *b3o4s (N → ∞) demi( . . . . . ) | 8N | 6 6 | 12 6 12 | 4 4 4 12 4 | 1 4 1 4 ---------------------+----+---------+-------------+----------------+-------- demi( x . . . . ) | 2 | 24N * | 4 1 0 | 2 2 0 4 0 | 1 2 0 2 o4s | 2 | * 24N | 0 1 4 | 0 0 2 4 2 | 0 2 1 2 ---------------------+----+---------+-------------+----------------+-------- demi( x3o . . . ) | 3 | 3 0 | 32N * * | 1 1 0 1 0 | 1 1 0 1 x . 2 o4s | 4 | 2 2 | * 12N * | 0 0 0 4 0 | 0 2 0 2 sefa( . o . *b3o4s ) | 3 | 0 3 | * * 32N | 0 0 1 1 1 | 0 1 1 1 ---------------------+----+---------+-------------+----------------+-------- demi( x3o3o . . ) ♦ 4 | 6 0 | 4 0 0 | 8N * * * * | 1 0 0 1 demi( x3o . *b3o . ) ♦ 4 | 6 0 | 4 0 0 | * 8N * * * | 1 1 0 0 . o . *b3o4s ♦ 4 | 0 6 | 0 0 4 | * * 8N * * | 0 1 1 0 sefa( x3o . *b3o4s ) ♦ 12 | 12 12 | 4 6 4 | * * * 8N * | 0 1 0 1 sefa( . o3o *b3o4s ) ♦ 4 | 0 6 | 0 0 4 | * * * * 8N | 0 0 1 1 ---------------------+----+---------+-------------+----------------+-------- demi( x3o3o *b3o . ) ♦ 8 | 24 0 | 32 0 0 | 8 8 0 0 0 | N * * * x3o . *b3o4s ♦ 32 | 48 48 | 32 24 32 | 0 8 8 8 0 | * N * * . o3o *b3o4s ♦ 8 | 0 24 | 0 0 32 | 0 0 8 0 8 | * * N * sefa( x3o3o *b3o4s ) ♦ 32 | 48 48 | 32 24 32 | 8 0 0 8 8 | * * * N starting figure: x3o3o *b3o4x
© 2004-2024 | top of page |