Acronym sidditdiddip
Name small-ditrigonary-dodekicosidodecahedron prism
Circumradius sqrt[(19+3 sqrt(5))/8] = 1.792631
Colonel of regiment siidip
Dihedral angles
  • at {4} between dip and trip:   arccos(-sqrt[(5-2 sqrt(5))/15]) = 100.812317°
  • at {10} between dip and sidditdid:   90°
  • at {5/2} between sidditdid and stip:   90°
  • at {3} between sidditdid and trip:   90°
  • at {4} between dip and stip:   arccos(1/sqrt(5)) = 63.434949°
Face vector 120, 300, 208, 46
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki

As abstract polytope sidditdiddip is isomorphic to gidditdiddip, thereby replacing retrograde pentagrams and decagons respectively by pentagons and decagrams, resp. replacing sidditdid by gidditdid, stip by pip, and dip by stiddip. – It also is isomorphic to saddiddip, thereby replacing retrograde pentagrams by retrograde pentagons, resp. replacing sidditdid by saddid and stip by pip. – Finally it is isomorphic to gaddiddip, thereby replacing retrograde pentagrams and decagons respectively by pentagrams and decagrams, resp. replacing sidditdid by gaddid and dip by stiddip.


Incidence matrix according to Dynkin symbol

x x5/3o3x5*b

. .   . .    | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
-------------+-----+------------+----------------+-----------
x .   . .    |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   . .    |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   . x    |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
-------------+-----+------------+----------------+-----------
x x   . .    |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   . x    |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5/3o .    |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x   . x5*b |  10 |  0   5   5 |  *  *  * 24  * |  0  1  0 1
. .   o3x    |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
-------------+-----+------------+----------------+-----------
x x5/3o .      10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x   . x5*b   20 | 10  10  10 |  5  5  0  2  0 |  * 12  * *
x .   o3x       6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5/3o3x5*b   60 |  0  60  60 |  0  0 12 12 20 |  *  *  * 2

x x5/2o3/2x5*b

. .   .   .    | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
---------------+-----+------------+----------------+-----------
x .   .   .    |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   .   .    |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   .   x    |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
---------------+-----+------------+----------------+-----------
x x   .   .    |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   .   x    |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5/2o   .    |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x   .   x5*b |  10 |  0   5   5 |  *  *  * 24  * |  0  1  0 1
. .   o3/2x    |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
---------------+-----+------------+----------------+-----------
x x5/2o   .      10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x   .   x5*b   20 | 10  10  10 |  5  5  0  2  0 |  * 12  * *
x .   o3/2x       6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5/2o3/2x5*b   60 |  0  60  60 |  0  0 12 12 20 |  *  *  * 2

© 2004-2024
top of page