Acronym giidip
Name great-icosicosidodecahedron prism
Circumradius sqrt[(19-3 sqrt(5))/8] = 1.239546
Colonel of regiment gidditdiddip
Dihedral angles
  • at {6} between giid and hip:   90°
  • at {5} between giid and pip:   90°
  • at {3} between giid and trip:   90°
  • at {4} between hip and pip:   arccos(sqrt[(5-2 sqrt(5))/15]) = 79.187683°
  • at {4} between hip and trip:   arccos(sqrt(5)/3) = 41.810315°
Face vector 120, 300, 224, 54
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki  

As abstract polytope giidip is isomorphic to siidip, thereby replacing pentagons by pentagrams, resp. replacing giid by siid and pip by stip.


Incidence matrix according to Dynkin symbol

x x5o3/2x3*b

. . .   .    | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
-------------+-----+------------+----------------+-----------
x . .   .    |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x .   .    |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. . .   x    |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
-------------+-----+------------+----------------+-----------
x x .   .    |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x . .   x    |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5o   .    |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x .   x3*b |   6 |  0   3   3 |  *  *  * 40  * |  0  1  0 1
. . o3/2x    |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
-------------+-----+------------+----------------+-----------
x x5o   .      10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x .   x3*b   12 |  6   6   6 |  3  3  0  2  0 |  * 20  * *
x . o3/2x       6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5o3/2x3*b   60 |  0  60  60 |  0  0 12 20 20 |  *  *  * 2

x x5/4o3x3*b

. .   . .    | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
-------------+-----+------------+----------------+-----------
x .   . .    |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   . .    |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   . x    |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
-------------+-----+------------+----------------+-----------
x x   . .    |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   . x    |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5/4o .    |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x   . x3*b |   6 |  0   3   3 |  *  *  * 40  * |  0  1  0 1
. .   o3x    |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
-------------+-----+------------+----------------+-----------
x x5/4o .      10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x   . x3*b   12 |  6   6   6 |  3  3  0  2  0 |  * 20  * *
x .   o3x       6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5/4o3x3*b   60 |  0  60  60 |  0  0 12 20 20 |  *  *  * 2

© 2004-2024
top of page