Acronym giidip Name great-icosicosidodecahedron prism Circumradius sqrt[(19-3 sqrt(5))/8] = 1.239546 Colonel of regiment gidditdiddip Dihedral angles at {6} between giid and hip:   90° at {5} between giid and pip:   90° at {3} between giid and trip:   90° at {4} between hip and pip:   arccos(sqrt[(5-2 sqrt(5))/15]) = 79.187683° at {4} between hip and trip:   arccos(sqrt(5)/3) = 41.810315° Externallinks

As abstract polytope giidip is isomorphic to siidip, thereby replacing pentagons by pentagrams, resp. replacing giid by siid and pip by stip.

Incidence matrix according to Dynkin symbol

```x x5o3/2x3*b

. . .   .    | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
-------------+-----+------------+----------------+-----------
x . .   .    |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x .   .    |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. . .   x    |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
-------------+-----+------------+----------------+-----------
x x .   .    |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x . .   x    |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5o   .    |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x .   x3*b |   6 |  0   3   3 |  *  *  * 40  * |  0  1  0 1
. . o3/2x    |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
-------------+-----+------------+----------------+-----------
x x5o   .    ♦  10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x .   x3*b ♦  12 |  6   6   6 |  3  3  0  2  0 |  * 20  * *
x . o3/2x    ♦   6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5o3/2x3*b ♦  60 |  0  60  60 |  0  0 12 20 20 |  *  *  * 2
```

```x x5/4o3x3*b

. .   . .    | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
-------------+-----+------------+----------------+-----------
x .   . .    |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   . .    |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   . x    |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
-------------+-----+------------+----------------+-----------
x x   . .    |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   . x    |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5/4o .    |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x   . x3*b |   6 |  0   3   3 |  *  *  * 40  * |  0  1  0 1
. .   o3x    |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
-------------+-----+------------+----------------+-----------
x x5/4o .    ♦  10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x   . x3*b ♦  12 |  6   6   6 |  3  3  0  2  0 |  * 20  * *
x .   o3x    ♦   6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5/4o3x3*b ♦  60 |  0  60  60 |  0  0 12 20 20 |  *  *  * 2
```