Acronym | sidpixathi |
Name | small dipentagonal hexacositrihecatonicosachoron |
Circumradius | sqrt[4+sqrt(5)] = 2.497212 |
Colonel of regiment | padohi |
Face vector | 1440, 7200, 6240, 960 |
Confer |
|
External links |
As abstract polytope sidpixathi is isomorphic to gidpixathi, thereby replacing pentagons and pentagrams, resp. replacing gad by sissid, ti by tiggy, and gike by ike.
Incidence matrix according to Dynkin symbol
x3x3o5/2o5/4*a . . . . | 1440 | 5 5 | 10 5 5 | 5 5 1 1 ---------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . x . . | 2 | * 3600 | 2 0 2 | 2 1 0 1 ---------------+------+-----------+----------------+---------------- x3x . . | 6 | 3 3 | 2400 * * | 1 1 0 0 x . . o5/4*a | 5 | 5 0 | * 1440 * | 0 1 1 0 . x3o . | 3 | 0 3 | * * 2400 | 1 0 0 1 ---------------+------+-----------+----------------+---------------- x3x3o . ♦ 12 | 6 12 | 4 0 4 | 600 * * * x3x . o5/4*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5/2o5/4*a ♦ 12 | 30 0 | 0 12 0 | * * 120 * . x3o5/2o ♦ 12 | 0 30 | 0 0 20 | * * * 120
x3x3o5/3o5*a . . . . | 1440 | 5 5 | 10 5 5 | 5 5 1 1 -------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . x . . | 2 | * 3600 | 2 0 2 | 2 1 0 1 -------------+------+-----------+----------------+---------------- x3x . . | 6 | 3 3 | 2400 * * | 1 1 0 0 x . . o5*a | 5 | 5 0 | * 1440 * | 0 1 1 0 . x3o . | 3 | 0 3 | * * 2400 | 1 0 0 1 -------------+------+-----------+----------------+---------------- x3x3o . ♦ 12 | 6 12 | 4 0 4 | 600 * * * x3x . o5*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5/3o5*a ♦ 12 | 30 0 | 0 12 0 | * * 120 * . x3o5/3o ♦ 12 | 0 30 | 0 0 20 | * * * 120
x3x3/2o5/2o5*a . . . . | 1440 | 5 5 | 10 5 5 | 5 5 1 1 ---------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . x . . | 2 | * 3600 | 2 0 2 | 2 1 0 1 ---------------+------+-----------+----------------+---------------- x3x . . | 6 | 3 3 | 2400 * * | 1 1 0 0 x . . o5*a | 5 | 5 0 | * 1440 * | 0 1 1 0 . x3/2o . | 3 | 0 3 | * * 2400 | 1 0 0 1 ---------------+------+-----------+----------------+---------------- x3x3/2o . ♦ 12 | 6 12 | 4 0 4 | 600 * * * x3x . o5*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5/2o5*a ♦ 12 | 30 0 | 0 12 0 | * * 120 * . x3/2o5/2o ♦ 12 | 0 30 | 0 0 20 | * * * 120
x3x3/2o5/3o5/4*a . . . . | 1440 | 5 5 | 10 5 5 | 5 5 1 1 -----------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . x . . | 2 | * 3600 | 2 0 2 | 2 1 0 1 -----------------+------+-----------+----------------+---------------- x3x . . | 6 | 3 3 | 2400 * * | 1 1 0 0 x . . o5/4*a | 5 | 5 0 | * 1440 * | 0 1 1 0 . x3/2o . | 3 | 0 3 | * * 2400 | 1 0 0 1 -----------------+------+-----------+----------------+---------------- x3x3/2o . ♦ 12 | 6 12 | 4 0 4 | 600 * * * x3x . o5/4*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5/3o5/4*a ♦ 12 | 30 0 | 0 12 0 | * * 120 * . x3/2o5/3o ♦ 12 | 0 30 | 0 0 20 | * * * 120
© 2004-2024 | top of page |