As abstract polytope sidpixathi is isomorphic to gidpixathi, thereby replacing pentagons and pentagrams, resp. replacing gad by sissid, ti by tiggy, and gike by ike.

Incidence matrix according to Dynkin symbol

```x3x3o5/2o5/4*a

. . .   .      | 1440 |    5    5 |   10    5    5 |   5   5   1   1
---------------+------+-----------+----------------+----------------
x . .   .      |    2 | 3600    * |    2    2    0 |   1   2   1   0
. x .   .      |    2 |    * 3600 |    2    0    2 |   2   1   0   1
---------------+------+-----------+----------------+----------------
x3x .   .      |    6 |    3    3 | 2400    *    * |   1   1   0   0
x . .   o5/4*a |    5 |    5    0 |    * 1440    * |   0   1   1   0
. x3o   .      |    3 |    0    3 |    *    * 2400 |   1   0   0   1
---------------+------+-----------+----------------+----------------
x3x3o   .      ♦   12 |    6   12 |    4    0    4 | 600   *   *   *
x3x .   o5/4*a ♦   60 |   60   30 |   20   12    0 |   * 120   *   *
x . o5/2o5/4*a ♦   12 |   30    0 |    0   12    0 |   *   * 120   *
. x3o5/2o      ♦   12 |    0   30 |    0    0   20 |   *   *   * 120
```

```x3x3o5/3o5*a

. . .   .    | 1440 |    5    5 |   10    5    5 |   5   5   1   1
-------------+------+-----------+----------------+----------------
x . .   .    |    2 | 3600    * |    2    2    0 |   1   2   1   0
. x .   .    |    2 |    * 3600 |    2    0    2 |   2   1   0   1
-------------+------+-----------+----------------+----------------
x3x .   .    |    6 |    3    3 | 2400    *    * |   1   1   0   0
x . .   o5*a |    5 |    5    0 |    * 1440    * |   0   1   1   0
. x3o   .    |    3 |    0    3 |    *    * 2400 |   1   0   0   1
-------------+------+-----------+----------------+----------------
x3x3o   .    ♦   12 |    6   12 |    4    0    4 | 600   *   *   *
x3x .   o5*a ♦   60 |   60   30 |   20   12    0 |   * 120   *   *
x . o5/3o5*a ♦   12 |   30    0 |    0   12    0 |   *   * 120   *
. x3o5/3o    ♦   12 |    0   30 |    0    0   20 |   *   *   * 120
```

```x3x3/2o5/2o5*a

. .   .   .    | 1440 |    5    5 |   10    5    5 |   5   5   1   1
---------------+------+-----------+----------------+----------------
x .   .   .    |    2 | 3600    * |    2    2    0 |   1   2   1   0
. x   .   .    |    2 |    * 3600 |    2    0    2 |   2   1   0   1
---------------+------+-----------+----------------+----------------
x3x   .   .    |    6 |    3    3 | 2400    *    * |   1   1   0   0
x .   .   o5*a |    5 |    5    0 |    * 1440    * |   0   1   1   0
. x3/2o   .    |    3 |    0    3 |    *    * 2400 |   1   0   0   1
---------------+------+-----------+----------------+----------------
x3x3/2o   .    ♦   12 |    6   12 |    4    0    4 | 600   *   *   *
x3x   .   o5*a ♦   60 |   60   30 |   20   12    0 |   * 120   *   *
x .   o5/2o5*a ♦   12 |   30    0 |    0   12    0 |   *   * 120   *
. x3/2o5/2o    ♦   12 |    0   30 |    0    0   20 |   *   *   * 120
```

```x3x3/2o5/3o5/4*a

. .   .   .      | 1440 |    5    5 |   10    5    5 |   5   5   1   1
-----------------+------+-----------+----------------+----------------
x .   .   .      |    2 | 3600    * |    2    2    0 |   1   2   1   0
. x   .   .      |    2 |    * 3600 |    2    0    2 |   2   1   0   1
-----------------+------+-----------+----------------+----------------
x3x   .   .      |    6 |    3    3 | 2400    *    * |   1   1   0   0
x .   .   o5/4*a |    5 |    5    0 |    * 1440    * |   0   1   1   0
. x3/2o   .      |    3 |    0    3 |    *    * 2400 |   1   0   0   1
-----------------+------+-----------+----------------+----------------
x3x3/2o   .      ♦   12 |    6   12 |    4    0    4 | 600   *   *   *
x3x   .   o5/4*a ♦   60 |   60   30 |   20   12    0 |   * 120   *   *
x .   o5/3o5/4*a ♦   12 |   30    0 |    0   12    0 |   *   * 120   *
. x3/2o5/3o      ♦   12 |    0   30 |    0    0   20 |   *   *   * 120
```