Acronym | gidpixathi |
Name | great dipentagonal hexacositrihecatonicosachoron |
Circumradius | sqrt[4-sqrt(5)] = 1.328131 |
Colonel of regiment | gidipthi |
Face vector | 1440, 7200, 6240, 960 |
Confer |
|
External links |
As abstract polytope gidpixathi is isomorphic to sidpixathi, thereby replacing pentagrams and pentagons, resp. replacing sissid by gad, tiggy by ti, and ike by gike.
Incidence matrix according to Dynkin symbol
x3x3o5o5/3*a . . . . | 1440 | 5 5 | 10 5 5 | 5 5 1 1 -------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . x . . | 2 | * 3600 | 2 0 2 | 2 1 0 1 -------------+------+-----------+----------------+---------------- x3x . . | 6 | 3 3 | 2400 * * | 1 1 0 0 x . . o5/3*a | 5 | 5 0 | * 1440 * | 0 1 1 0 . x3o . | 3 | 0 3 | * * 2400 | 1 0 0 1 -------------+------+-----------+----------------+---------------- x3x3o . ♦ 12 | 6 12 | 4 0 4 | 600 * * * x3x . o5/3*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5o5/3*a ♦ 12 | 30 0 | 0 12 0 | * * 120 * . x3o5o ♦ 12 | 0 30 | 0 0 20 | * * * 120
x3x3o5/4o5/2*a . . . . | 1440 | 5 5 | 10 5 5 | 5 5 1 1 ---------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . x . . | 2 | * 3600 | 2 0 2 | 2 1 0 1 ---------------+------+-----------+----------------+---------------- x3x . . | 6 | 3 3 | 2400 * * | 1 1 0 0 x . . o5/2*a | 5 | 5 0 | * 1440 * | 0 1 1 0 . x3o . | 3 | 0 3 | * * 2400 | 1 0 0 1 ---------------+------+-----------+----------------+---------------- x3x3o . ♦ 12 | 6 12 | 4 0 4 | 600 * * * x3x . o5/2*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5/4o5/2*a ♦ 12 | 30 0 | 0 12 0 | * * 120 * . x3o5/4o ♦ 12 | 0 30 | 0 0 20 | * * * 120
x3x3/2o5o5/2*a . . . . | 1440 | 5 5 | 10 5 5 | 5 5 1 1 ---------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . x . . | 2 | * 3600 | 2 0 2 | 2 1 0 1 ---------------+------+-----------+----------------+---------------- x3x . . | 6 | 3 3 | 2400 * * | 1 1 0 0 x . . o5/2*a | 5 | 5 0 | * 1440 * | 0 1 1 0 . x3/2o . | 3 | 0 3 | * * 2400 | 1 0 0 1 ---------------+------+-----------+----------------+---------------- x3x3/2o . ♦ 12 | 6 12 | 4 0 4 | 600 * * * x3x . o5/2*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5o5/2*a ♦ 12 | 30 0 | 0 12 0 | * * 120 * . x3/2o5o ♦ 12 | 0 30 | 0 0 20 | * * * 120
x3x3/2o5/4o5/3*a . . . . | 1440 | 5 5 | 10 5 5 | 5 5 1 1 -----------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . x . . | 2 | * 3600 | 2 0 2 | 2 1 0 1 -----------------+------+-----------+----------------+---------------- x3x . . | 6 | 3 3 | 2400 * * | 1 1 0 0 x . . o5/3*a | 5 | 5 0 | * 1440 * | 0 1 1 0 . x3/2o . | 3 | 0 3 | * * 2400 | 1 0 0 1 -----------------+------+-----------+----------------+---------------- x3x3/2o . ♦ 12 | 6 12 | 4 0 4 | 600 * * * x3x . o5/3*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5/4o5/3*a ♦ 12 | 30 0 | 0 12 0 | * * 120 * . x3/2o5/4o ♦ 12 | 0 30 | 0 0 20 | * * * 120
© 2004-2024 | top of page |