Acronym sibrid (old: sadrid)
Name small birhombated dodecateron,
bicantellated hexateron
Circumradius sqrt(2) = 1.414214
Vertex figure
 ©
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: deca rawvtip srip triddip
rabird 61200
sibrid 001220
& others)
External
links
wikipedia  

Incidence matrix according to Dynkin symbol

o3x3o3x3o

. . . . . | 90 |   4   4 |  2  2   8  2  2 |  1  4  4  4  1 | 2  2 2
----------+----+---------+-----------------+----------------+-------
. x . . . |  2 | 180   * |  1  1   2  0  0 |  1  2  2  1  0 | 2  1 1
. . . x . |  2 |   * 180 |  0  0   2  1  1 |  0  1  2  2  1 | 1  1 2
----------+----+---------+-----------------+----------------+-------
o3x . . . |  3 |   3   0 | 60  *   *  *  * |  1  2  0  0  0 | 2  1 0
. x3o . . |  3 |   3   0 |  * 60   *  *  * |  1  0  2  0  0 | 2  0 1
. x . x . |  4 |   2   2 |  *  * 180  *  * |  0  1  1  1  0 | 1  1 1
. . o3x . |  3 |   0   3 |  *  *   * 60  * |  0  0  2  0  1 | 1  0 2
. . . x3o |  3 |   0   3 |  *  *   *  * 60 |  0  0  0  2  1 | 0  1 2
----------+----+---------+-----------------+----------------+-------
o3x3o . .   6 |  12   0 |  4  4   0  0  0 | 15  *  *  *  * | 2  0 0
o3x . x .   6 |   6   3 |  2  0   3  0  0 |  * 60  *  *  * | 1  1 0
. x3o3x .  12 |  12  12 |  0  4   6  4  0 |  *  * 30  *  * | 1  0 1
. x . x3o   6 |   3   6 |  0  0   3  0  2 |  *  *  * 60  * | 0  1 1
. . o3x3o   6 |   0  12 |  0  0   0  4  4 |  *  *  *  * 15 | 0  0 2
----------+----+---------+-----------------+----------------+-------
o3x3o3x .  30 |  60  30 | 20 20  30 10  0 |  5 10  5  0  0 | 6  * *
o3x . x3o   9 |   9   9 |  3  0   9  0  3 |  0  3  0  3  0 | * 20 *
. x3o3x3o  30 |  30  60 |  0 10  30 20 20 |  0  0  5 10  5 | *  * 6
or
. . . . .    | 90 |   8 |   4   4   8 |  2   8  4 |  4  2
-------------+----+-----+-------------+-----------+------
. x . . .  & |  2 | 360 |   1   1   2 |  1   3  2 |  3  1
-------------+----+-----+-------------+-----------+------
o3x . . .  & |  3 |   3 | 120   *   * |  1   2  0 |  2  1
. x3o . .  & |  3 |   3 |   * 120   * |  1   0  2 |  3  0
. x . x .    |  4 |   4 |   *   * 180 |  0   2  1 |  2  1
-------------+----+-----+-------------+-----------+------
o3x3o . .  &   6 |  12 |   4   4   0 | 30   *  * |  2  0
o3x . x .  &   6 |   9 |   2   0   3 |  * 120  * |  1  1
. x3o3x .     12 |  24 |   0   8   6 |  *   * 30 |  2  0
-------------+----+-----+-------------+-----------+------
o3x3o3x .  &  30 |  90 |  20  30  30 |  5  10  5 | 12  *
o3x . x3o      9 |  18 |   6   0   9 |  0   6  0 |  * 20

o3/2x3o3x3o

.   . . . . | 90 |   4   4 |  2  2   8  2  2 |  1  4  4  4  1 | 2  2 2
------------+----+---------+-----------------+----------------+-------
.   x . . . |  2 | 180   * |  1  1   2  0  0 |  1  2  2  1  0 | 2  1 1
.   . . x . |  2 |   * 180 |  0  0   2  1  1 |  0  1  2  2  1 | 1  1 2
------------+----+---------+-----------------+----------------+-------
o3/2x . . . |  3 |   3   0 | 60  *   *  *  * |  1  2  0  0  0 | 2  1 0
.   x3o . . |  3 |   3   0 |  * 60   *  *  * |  1  0  2  0  0 | 2  0 1
.   x . x . |  4 |   2   2 |  *  * 180  *  * |  0  1  1  1  0 | 1  1 1
.   . o3x . |  3 |   0   3 |  *  *   * 60  * |  0  0  2  0  1 | 1  0 2
.   . . x3o |  3 |   0   3 |  *  *   *  * 60 |  0  0  0  2  1 | 0  1 2
------------+----+---------+-----------------+----------------+-------
o3/2x3o . .   6 |  12   0 |  4  4   0  0  0 | 15  *  *  *  * | 2  0 0
o3/2x . x .   6 |   6   3 |  2  0   3  0  0 |  * 60  *  *  * | 1  1 0
.   x3o3x .  12 |  12  12 |  0  4   6  4  0 |  *  * 30  *  * | 1  0 1
.   x . x3o   6 |   3   6 |  0  0   3  0  2 |  *  *  * 60  * | 0  1 1
.   . o3x3o   6 |   0  12 |  0  0   0  4  4 |  *  *  *  * 15 | 0  0 2
------------+----+---------+-----------------+----------------+-------
o3/2x3o3x .  30 |  60  30 | 20 20  30 10  0 |  5 10  5  0  0 | 6  * *
o3/2x . x3o   9 |   9   9 |  3  0   9  0  3 |  0  3  0  3  0 | * 20 *
.   x3o3x3o  30 |  30  60 |  0 10  30 20 20 |  0  0  5 10  5 | *  * 6

xoo3oxx3xxo3oox&#xt   → both heights = sqrt(3/5) = 0.774597
(srip || pseudo deca || inv srip)

o..3o..3o..3o..     & | 60  * |  2   4   2  0 |  1  4  2  2  2  1   4  0 |  2  2  1  1  4  2  2 | 1  3  2
.o.3.o.3.o.3.o.       |  * 30 |  0   0   4  4 |  0  0  0  0  2  4   8  2 |  0  0  0  2  4  4  4 | 0  4  2
----------------------+-------+---------------+--------------------------+----------------------+--------
x.. ... ... ...     & |  2  0 | 60   *   *  * |  1  2  0  0  1  0   0  0 |  2  1  0  1  2  0  0 | 1  2  1
... ... x.. ...     & |  2  0 |  * 120   *  * |  0  1  1  1  0  0   1  0 |  1  1  1  0  1  1  1 | 1  2  1
oo.3oo.3oo.3oo.&#x  & |  1  1 |  *   * 120  * |  0  0  0  0  1  1   2  0 |  0  0  0  1  2  2  1 | 0  3  1
... .x. ... ...     & |  0  2 |  *   *   * 60 |  0  0  0  0  0  1   2  1 |  0  0  0  1  1  2  2 | 0  3  1
----------------------+-------+---------------+--------------------------+----------------------+--------
x..3o.. ... ...     & |  3  0 |  3   0   0  0 | 20  *  *  *  *  *   *  * |  2  0  0  1  0  0  0 | 1  2  0
x.. ... x.. ...     & |  4  0 |  2   2   0  0 |  * 60  *  *  *  *   *  * |  1  1  0  0  1  0  0 | 1  1  1
... o..3x.. ...     & |  3  0 |  0   3   0  0 |  *  * 40  *  *  *   *  * |  1  0  1  0  0  1  0 | 1  2  0
... ... x..3o..     & |  3  0 |  0   3   0  0 |  *  *  * 40  *  *   *  * |  0  1  1  0  0  0  1 | 1  1  1
xo. ... ... ...&#x  & |  2  1 |  1   0   2  0 |  *  *  *  * 60  *   *  * |  0  0  0  1  2  0  0 | 0  2  1
... ox. ... ...&#x  & |  1  2 |  0   0   2  1 |  *  *  *  *  * 60   *  * |  0  0  0  1  0  2  0 | 0  3  0
... ... xx. ...&#x  & |  2  2 |  0   1   2  1 |  *  *  *  *  *  * 120  * |  0  0  0  0  1  1  1 | 0  2  1
.o.3.x. ... ...     & |  0  3 |  0   0   0  3 |  *  *  *  *  *  *   * 20 |  0  0  0  1  0  0  2 | 0  2  1
----------------------+-------+---------------+--------------------------+----------------------+--------
x..3o..3x.. ...     &  12  0 | 12  12   0  0 |  4  6  4  0  0  0   0  0 | 10  *  *  *  *  *  * | 1  1  0
x.. ... x..3o..     &   6  0 |  3   6   0  0 |  0  3  0  2  0  0   0  0 |  * 20  *  *  *  *  * | 1  0  1
... o..3x..3o..     &   6  0 |  0  12   0  0 |  0  0  4  4  0  0   0  0 |  *  * 10  *  *  *  * | 1  1  0
xo.3ox. ... ...&#x  &   3  3 |  3   0   6  3 |  1  0  0  0  3  3   0  1 |  *  *  * 20  *  *  * | 0  2  0
xo. ... xx. ...&#x  &   4  2 |  2   2   4  1 |  0  1  0  0  2  0   2  0 |  *  *  *  * 60  *  * | 0  1  1
... oxx3xxo ...&#xt     6  6 |  0   6  12  6 |  0  0  2  0  0  6   6  0 |  *  *  *  *  * 20  * | 0  2  0
... ... xx.3oo.&#x  &   3  3 |  0   3   3  3 |  0  0  0  1  0  0   3  1 |  *  *  *  *  *  * 40 | 0  1  1
----------------------+-------+---------------+--------------------------+----------------------+--------
x..3o..3x..3o..     &  30  0 | 30  60   0  0 | 10 30 20 20  0  0   0  0 |  5 10  5  0  0  0  0 | 2  *  *
xoo3oxx3xxo ...&#xt &  18 12 | 12  24  36 18 |  4  6  8  4 12 18  24  4 |  1  0  1  4  6  4  4 | * 10  *
xo. ... xx.3oo.&#x  &   6  3 |  3   6   6  3 |  0  3  0  2  3  0   6  1 |  0  1  0  0  3  0  2 | *  * 20

© 2004-2019
top of page