Acronym | sibrid (old: sadrid) | |||||||||||||||
Name |
small birhombated dodecateron, bicantellated hexateron, equatorial cross-section of scad-first trim, equatorial cross-section of rix-first brox | |||||||||||||||
Circumradius | sqrt(2) = 1.414214 | |||||||||||||||
Lace city in approx. ASCII-art |
o3x3o x3x3o x3o3x -- o3x3o3x (srip) x3x3o o3u3o o3x3x -- o3x3x3o (deca) x3o3x o3x3x o3x3o -- x3o3x3o (inv srip) | |||||||||||||||
Vertex figure |
© | |||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| |||||||||||||||
Face vector | 90, 360, 420, 180, 32 | |||||||||||||||
Confer |
| |||||||||||||||
External links |
As abstract polytope sibrid is isomorphic to its (Grünbaumian) isomorph, thereby replacing some prograde by retrograde triangles, co by 2thah, resp. srip by pinnip+5 2thah.
By virtue of an outer symmetry this is a non-quasiregular monotoxal polyteron, that is all edges belong to the same equivalence class.
Incidence matrix according to Dynkin symbol
o3x3o3x3o . . . . . | 90 | 4 4 | 2 2 8 2 2 | 1 4 4 4 1 | 2 2 2 ----------+----+---------+-----------------+----------------+------- . x . . . | 2 | 180 * | 1 1 2 0 0 | 1 2 2 1 0 | 2 1 1 . . . x . | 2 | * 180 | 0 0 2 1 1 | 0 1 2 2 1 | 1 1 2 ----------+----+---------+-----------------+----------------+------- o3x . . . | 3 | 3 0 | 60 * * * * | 1 2 0 0 0 | 2 1 0 . x3o . . | 3 | 3 0 | * 60 * * * | 1 0 2 0 0 | 2 0 1 . x . x . | 4 | 2 2 | * * 180 * * | 0 1 1 1 0 | 1 1 1 . . o3x . | 3 | 0 3 | * * * 60 * | 0 0 2 0 1 | 1 0 2 . . . x3o | 3 | 0 3 | * * * * 60 | 0 0 0 2 1 | 0 1 2 ----------+----+---------+-----------------+----------------+------- o3x3o . . ♦ 6 | 12 0 | 4 4 0 0 0 | 15 * * * * | 2 0 0 o3x . x . ♦ 6 | 6 3 | 2 0 3 0 0 | * 60 * * * | 1 1 0 . x3o3x . ♦ 12 | 12 12 | 0 4 6 4 0 | * * 30 * * | 1 0 1 . x . x3o ♦ 6 | 3 6 | 0 0 3 0 2 | * * * 60 * | 0 1 1 . . o3x3o ♦ 6 | 0 12 | 0 0 0 4 4 | * * * * 15 | 0 0 2 ----------+----+---------+-----------------+----------------+------- o3x3o3x . ♦ 30 | 60 30 | 20 20 30 10 0 | 5 10 5 0 0 | 6 * * o3x . x3o ♦ 9 | 9 9 | 3 0 9 0 3 | 0 3 0 3 0 | * 20 * . x3o3x3o ♦ 30 | 30 60 | 0 10 30 20 20 | 0 0 5 10 5 | * * 6
or . . . . . | 90 | 8 | 4 4 8 | 2 8 4 | 4 2 -------------+----+-----+-------------+-----------+------ . x . . . & | 2 | 360 | 1 1 2 | 1 3 2 | 3 1 -------------+----+-----+-------------+-----------+------ o3x . . . & | 3 | 3 | 120 * * | 1 2 0 | 2 1 . x3o . . & | 3 | 3 | * 120 * | 1 0 2 | 3 0 . x . x . | 4 | 4 | * * 180 | 0 2 1 | 2 1 -------------+----+-----+-------------+-----------+------ o3x3o . . & ♦ 6 | 12 | 4 4 0 | 30 * * | 2 0 o3x . x . & ♦ 6 | 9 | 2 0 3 | * 120 * | 1 1 . x3o3x . ♦ 12 | 24 | 0 8 6 | * * 30 | 2 0 -------------+----+-----+-------------+-----------+------ o3x3o3x . & ♦ 30 | 90 | 20 30 30 | 5 10 5 | 12 * o3x . x3o ♦ 9 | 18 | 6 0 9 | 0 6 0 | * 20
o3/2x3o3x3o . . . . . | 90 | 4 4 | 2 2 8 2 2 | 1 4 4 4 1 | 2 2 2 ------------+----+---------+-----------------+----------------+------- . x . . . | 2 | 180 * | 1 1 2 0 0 | 1 2 2 1 0 | 2 1 1 . . . x . | 2 | * 180 | 0 0 2 1 1 | 0 1 2 2 1 | 1 1 2 ------------+----+---------+-----------------+----------------+------- o3/2x . . . | 3 | 3 0 | 60 * * * * | 1 2 0 0 0 | 2 1 0 . x3o . . | 3 | 3 0 | * 60 * * * | 1 0 2 0 0 | 2 0 1 . x . x . | 4 | 2 2 | * * 180 * * | 0 1 1 1 0 | 1 1 1 . . o3x . | 3 | 0 3 | * * * 60 * | 0 0 2 0 1 | 1 0 2 . . . x3o | 3 | 0 3 | * * * * 60 | 0 0 0 2 1 | 0 1 2 ------------+----+---------+-----------------+----------------+------- o3/2x3o . . ♦ 6 | 12 0 | 4 4 0 0 0 | 15 * * * * | 2 0 0 o3/2x . x . ♦ 6 | 6 3 | 2 0 3 0 0 | * 60 * * * | 1 1 0 . x3o3x . ♦ 12 | 12 12 | 0 4 6 4 0 | * * 30 * * | 1 0 1 . x . x3o ♦ 6 | 3 6 | 0 0 3 0 2 | * * * 60 * | 0 1 1 . . o3x3o ♦ 6 | 0 12 | 0 0 0 4 4 | * * * * 15 | 0 0 2 ------------+----+---------+-----------------+----------------+------- o3/2x3o3x . ♦ 30 | 60 30 | 20 20 30 10 0 | 5 10 5 0 0 | 6 * * o3/2x . x3o ♦ 9 | 9 9 | 3 0 9 0 3 | 0 3 0 3 0 | * 20 * . x3o3x3o ♦ 30 | 30 60 | 0 10 30 20 20 | 0 0 5 10 5 | * * 6
o3/2x3o3x3/2o . . . . . | 90 | 4 4 | 2 2 8 2 2 | 1 4 4 4 1 | 2 2 2 --------------+----+---------+-----------------+----------------+------- . x . . . | 2 | 180 * | 1 1 2 0 0 | 1 2 2 1 0 | 2 1 1 . . . x . | 2 | * 180 | 0 0 2 1 1 | 0 1 2 2 1 | 1 1 2 --------------+----+---------+-----------------+----------------+------- o3/2x . . . | 3 | 3 0 | 60 * * * * | 1 2 0 0 0 | 2 1 0 . x3o . . | 3 | 3 0 | * 60 * * * | 1 0 2 0 0 | 2 0 1 . x . x . | 4 | 2 2 | * * 180 * * | 0 1 1 1 0 | 1 1 1 . . o3x . | 3 | 0 3 | * * * 60 * | 0 0 2 0 1 | 1 0 2 . . . x3/2o | 3 | 0 3 | * * * * 60 | 0 0 0 2 1 | 0 1 2 --------------+----+---------+-----------------+----------------+------- o3/2x3o . . ♦ 6 | 12 0 | 4 4 0 0 0 | 15 * * * * | 2 0 0 o3/2x . x . ♦ 6 | 6 3 | 2 0 3 0 0 | * 60 * * * | 1 1 0 . x3o3x . ♦ 12 | 12 12 | 0 4 6 4 0 | * * 30 * * | 1 0 1 . x . x3/2o ♦ 6 | 3 6 | 0 0 3 0 2 | * * * 60 * | 0 1 1 . . o3x3/2o ♦ 6 | 0 12 | 0 0 0 4 4 | * * * * 15 | 0 0 2 --------------+----+---------+-----------------+----------------+------- o3/2x3o3x . ♦ 30 | 60 30 | 20 20 30 10 0 | 5 10 5 0 0 | 6 * * o3/2x . x3/2o ♦ 9 | 9 9 | 3 0 9 0 3 | 0 3 0 3 0 | * 20 * . x3o3x3/2o ♦ 30 | 30 60 | 0 10 30 20 20 | 0 0 5 10 5 | * * 6
or . . . . . | 90 | 8 | 4 4 8 | 2 8 4 | 4 2 -----------------+----+-----+-------------+-----------+------ . x . . . & | 2 | 360 | 1 1 2 | 1 3 2 | 3 1 -----------------+----+-----+-------------+-----------+------ o3/2x . . . & | 3 | 3 | 120 * * | 1 2 0 | 2 1 . x3o . . & | 3 | 3 | * 120 * | 1 0 2 | 3 0 . x . x . | 4 | 4 | * * 180 | 0 2 1 | 2 1 -----------------+----+-----+-------------+-----------+------ o3/2x3o . . & ♦ 6 | 12 | 4 4 0 | 30 * * | 2 0 o3/2x . x . & ♦ 6 | 9 | 2 0 3 | * 120 * | 1 1 . x3o3x . ♦ 12 | 24 | 0 8 6 | * * 30 | 2 0 -----------------+----+-----+-------------+-----------+------ o3/2x3o3x . & ♦ 30 | 90 | 20 30 30 | 5 10 5 | 12 * o3/2x . x3/2o ♦ 9 | 18 | 6 0 9 | 0 6 0 | * 20
xoo3oxx3xxo3oox&#xt → both heights = sqrt(3/5) = 0.774597 (srip || pseudo deca || inv srip) o..3o..3o..3o.. & | 60 * | 2 4 2 0 | 1 4 2 2 2 1 4 0 | 2 2 1 1 4 2 2 | 1 3 2 .o.3.o.3.o.3.o. | * 30 | 0 0 4 4 | 0 0 0 0 2 4 8 2 | 0 0 0 2 4 4 4 | 0 4 2 ----------------------+-------+---------------+--------------------------+----------------------+-------- x.. ... ... ... & | 2 0 | 60 * * * | 1 2 0 0 1 0 0 0 | 2 1 0 1 2 0 0 | 1 2 1 ... ... x.. ... & | 2 0 | * 120 * * | 0 1 1 1 0 0 1 0 | 1 1 1 0 1 1 1 | 1 2 1 oo.3oo.3oo.3oo.&#x & | 1 1 | * * 120 * | 0 0 0 0 1 1 2 0 | 0 0 0 1 2 2 1 | 0 3 1 ... .x. ... ... & | 0 2 | * * * 60 | 0 0 0 0 0 1 2 1 | 0 0 0 1 1 2 2 | 0 3 1 ----------------------+-------+---------------+--------------------------+----------------------+-------- x..3o.. ... ... & | 3 0 | 3 0 0 0 | 20 * * * * * * * | 2 0 0 1 0 0 0 | 1 2 0 x.. ... x.. ... & | 4 0 | 2 2 0 0 | * 60 * * * * * * | 1 1 0 0 1 0 0 | 1 1 1 ... o..3x.. ... & | 3 0 | 0 3 0 0 | * * 40 * * * * * | 1 0 1 0 0 1 0 | 1 2 0 ... ... x..3o.. & | 3 0 | 0 3 0 0 | * * * 40 * * * * | 0 1 1 0 0 0 1 | 1 1 1 xo. ... ... ...&#x & | 2 1 | 1 0 2 0 | * * * * 60 * * * | 0 0 0 1 2 0 0 | 0 2 1 ... ox. ... ...&#x & | 1 2 | 0 0 2 1 | * * * * * 60 * * | 0 0 0 1 0 2 0 | 0 3 0 ... ... xx. ...&#x & | 2 2 | 0 1 2 1 | * * * * * * 120 * | 0 0 0 0 1 1 1 | 0 2 1 .o.3.x. ... ... & | 0 3 | 0 0 0 3 | * * * * * * * 20 | 0 0 0 1 0 0 2 | 0 2 1 ----------------------+-------+---------------+--------------------------+----------------------+-------- x..3o..3x.. ... & ♦ 12 0 | 12 12 0 0 | 4 6 4 0 0 0 0 0 | 10 * * * * * * | 1 1 0 x.. ... x..3o.. & ♦ 6 0 | 3 6 0 0 | 0 3 0 2 0 0 0 0 | * 20 * * * * * | 1 0 1 ... o..3x..3o.. & ♦ 6 0 | 0 12 0 0 | 0 0 4 4 0 0 0 0 | * * 10 * * * * | 1 1 0 xo.3ox. ... ...&#x & ♦ 3 3 | 3 0 6 3 | 1 0 0 0 3 3 0 1 | * * * 20 * * * | 0 2 0 xo. ... xx. ...&#x & ♦ 4 2 | 2 2 4 1 | 0 1 0 0 2 0 2 0 | * * * * 60 * * | 0 1 1 ... oxx3xxo ...&#xt ♦ 6 6 | 0 6 12 6 | 0 0 2 0 0 6 6 0 | * * * * * 20 * | 0 2 0 ... ... xx.3oo.&#x & ♦ 3 3 | 0 3 3 3 | 0 0 0 1 0 0 3 1 | * * * * * * 40 | 0 1 1 ----------------------+-------+---------------+--------------------------+----------------------+-------- x..3o..3x..3o.. & ♦ 30 0 | 30 60 0 0 | 10 30 20 20 0 0 0 0 | 5 10 5 0 0 0 0 | 2 * * xoo3oxx3xxo ...&#xt & ♦ 18 12 | 12 24 36 18 | 4 6 8 4 12 18 24 4 | 1 0 1 4 6 4 4 | * 10 * xo. ... xx.3oo.&#x & ♦ 6 3 | 3 6 6 3 | 0 3 0 2 3 0 6 1 | 0 1 0 0 3 0 2 | * * 20
© 2004-2024 | top of page |