Acronym | seedatepthi |
Name | small exoditetrahedrary prismatotrishecatonicosachoron |
Circumradius | sqrt(2) = 1.414214 |
General of army | hi |
Colonel of regiment | dattady |
Face vector | 2400, 10800, 7920, 1080 |
Confer |
|
As abstract polychoron seedatepthi is isomorphic to geedatepthi, thereby interchanging pentagons and pentagrams, resp. replacing doe by gissid, and pip by stip.
This Grünbaumian polychoron happens to have axial vertex figures, in fact fv3/2of&#q, which coincide by 4 in a tetrahedral way. Thereby edges too can be seen to coincide by 3. Then seedatepthi belongs to the dattady regiment. As further the 2 classes of pentagons happens to coincide one by one, this polychoron moreover is exotic.
Further it could be obtained as blend of dattathi with dard tipady, blending out the gissid. – Alternatively it could be obtained as blend of dittadphi with gidard tipady, blending out the stip.
Incidence matrix according to Dynkin symbol
x5o3o5/4x5/2*b . . . . | 2400 | 3 6 | 3 6 3 3 | 1 3 3 1 ---------------+------+-----------+---------------------+---------------- x . . . | 2 | 3600 * | 2 2 0 0 | 1 2 1 0 . . . x | 2 | * 7200 | 0 1 1 1 | 0 1 1 1 ---------------+------+-----------+---------------------+---------------- x5o . . | 5 | 5 0 | 1440 * * * | 1 1 0 0 x . . x | 4 | 2 2 | * 3600 * * | 0 1 1 0 . o . x5/2*b | 5 | 0 5 | * * 1440 * | 0 1 0 1 . . o5/4x | 5 | 0 5 | * * * 1440 | 0 0 1 1 ---------------+------+-----------+---------------------+---------------- x5o3o . ♦ 20 | 30 0 | 12 0 0 0 | 120 * * * x5o . x5/2*b ♦ 60 | 60 60 | 12 30 12 0 | * 120 * * x . o5/4x ♦ 10 | 5 10 | 0 5 0 2 | * * 720 * . o3o5/4x5/2*b ♦ 20 | 0 60 | 0 0 12 12 | * * * 120
x5o3/2o5x5/2*b . . . . | 2400 | 3 6 | 3 6 3 3 | 1 3 3 1 ---------------+------+-----------+---------------------+---------------- x . . . | 2 | 3600 * | 2 2 0 0 | 1 2 1 0 . . . x | 2 | * 7200 | 0 1 1 1 | 0 1 1 1 ---------------+------+-----------+---------------------+---------------- x5o . . | 5 | 5 0 | 1440 * * * | 1 1 0 0 x . . x | 4 | 2 2 | * 3600 * * | 0 1 1 0 . o . x5/2*b | 5 | 0 5 | * * 1440 * | 0 1 0 1 . . o5x | 5 | 0 5 | * * * 1440 | 0 0 1 1 ---------------+------+-----------+---------------------+---------------- x5o3/2o . ♦ 20 | 30 0 | 12 0 0 0 | 120 * * * x5o . x5/2*b ♦ 60 | 60 60 | 12 30 12 0 | * 120 * * x . o5x ♦ 10 | 5 10 | 0 5 0 2 | * * 720 * . o3/2o5x5/2*b ♦ 20 | 0 60 | 0 0 12 12 | * * * 120
x5/4o3o5x5/3*b . . . . | 2400 | 3 6 | 3 6 3 3 | 1 3 3 1 ---------------+------+-----------+---------------------+---------------- x . . . | 2 | 3600 * | 2 2 0 0 | 1 2 1 0 . . . x | 2 | * 7200 | 0 1 1 1 | 0 1 1 1 ---------------+------+-----------+---------------------+---------------- x5/4o . . | 5 | 5 0 | 1440 * * * | 1 1 0 0 x . . x | 4 | 2 2 | * 3600 * * | 0 1 1 0 . o . x5/3*b | 5 | 0 5 | * * 1440 * | 0 1 0 1 . . o5x | 5 | 0 5 | * * * 1440 | 0 0 1 1 ---------------+------+-----------+---------------------+---------------- x5/4o3o . ♦ 20 | 30 0 | 12 0 0 0 | 120 * * * x5/4o . x5/3*b ♦ 60 | 60 60 | 12 30 12 0 | * 120 * * x . o5x ♦ 10 | 5 10 | 0 5 0 2 | * * 720 * . o3o5x5/3*b ♦ 20 | 0 60 | 0 0 12 12 | * * * 120
x5/4o3/2o5/4x5/3*b . . . . | 2400 | 3 6 | 3 6 3 3 | 1 3 3 1 -------------------+------+-----------+---------------------+---------------- x . . . | 2 | 3600 * | 2 2 0 0 | 1 2 1 0 . . . x | 2 | * 7200 | 0 1 1 1 | 0 1 1 1 -------------------+------+-----------+---------------------+---------------- x5/4o . . | 5 | 5 0 | 1440 * * * | 1 1 0 0 x . . x | 4 | 2 2 | * 3600 * * | 0 1 1 0 . o . x5/3*b | 5 | 0 5 | * * 1440 * | 0 1 0 1 . . o5/4x | 5 | 0 5 | * * * 1440 | 0 0 1 1 -------------------+------+-----------+---------------------+---------------- x5/4o3/2o . ♦ 20 | 30 0 | 12 0 0 0 | 120 * * * x5/4o . x5/3*b ♦ 60 | 60 60 | 12 30 12 0 | * 120 * * x . o5/4x ♦ 10 | 5 10 | 0 5 0 2 | * * 720 * . o3/2o5/4x5/3*b ♦ 20 | 0 60 | 0 0 12 12 | * * * 120
or, identifying coincident vertices and edges: 600 | 12 | 24 12 12 12 | 4 12 12 4 -----+------+---------------------+---------------- 2 | 3600 | 4 2 2 2 | 1 4 3 2 -----+------+---------------------+---------------- 4 | 4 | 3600 * * * | 0 1 1 0 5 | 5 | * 1440 * * | 1 1 0 0 5 | 5 | * * 1440 * | 0 1 0 1 5 | 5 | * * * 1440 | 0 0 1 1 -----+------+---------------------+---------------- ♦ 20 | 30 | 0 12 0 0 | 120 * * * ♦ 60 | 120 | 30 12 12 0 | * 120 * * ♦ 10 | 15 | 5 0 0 2 | * * 720 * ♦ 20 | 60 | 0 0 12 12 | * * * 120
© 2004-2024 | top of page |