Acronym | scajakh |
Name | small celliicosiheptaheptacontidipetic hexacomb |
By virtue of an outer symmetry this is a non-quasiregular monotoxal hexacomb, that is all edges belong to the same equivalence class.
Incidence matrix according to Dynkin symbol
x3o3o3o3x *c3o3x (N → ∞) . . . . . . . | 90N | 24 | 72 96 | 96 288 96 | 48 192 72 288 | 24 3 48 96 144 | 3 24 24 --------------------+-----+-------+-------------+-------------------+-----------------------+------------------------+---------- x . . . . . . & | 2 | 1080N | 6 8 | 12 36 12 | 8 32 12 48 | 8 1 10 20 32 | 2 9 6 --------------------+-----+-------+-------------+-------------------+-----------------------+------------------------+---------- x3o . . . . . & | 3 | 3 | 2160N * | 4 4 0 | 4 8 2 4 | 4 1 4 4 4 | 2 4 1 x . . . x . . & | 4 | 4 | * 2160N | 0 12 3 | 0 6 3 15 | 3 0 2 7 12 | 1 5 3 --------------------+-----+-------+-------------+-------------------+-----------------------+------------------------+---------- x3o3o . . . . & ♦ 4 | 6 | 4 0 | 2160N * * | 2 2 0 0 | 2 1 2 1 0 | 2 2 0 x3o . . x . . & ♦ 6 | 9 | 2 3 | * 4320N * | 0 2 1 2 | 2 0 1 2 3 | 1 3 1 x . . . x . x ♦ 8 | 12 | 0 6 | * * 1080N | 0 0 0 6 | 0 0 0 3 6 | 0 3 2 --------------------+-----+-------+-------------+-------------------+-----------------------+------------------------+---------- x3o3o3o . . . & ♦ 5 | 10 | 10 0 | 5 0 0 | 864N * * * | 1 1 1 0 0 | 2 1 0 x3o3o . x . . & ♦ 8 | 16 | 8 6 | 2 4 0 | * 2160N * * | 1 0 1 1 0 | 1 2 0 x3o . o3x . . & ♦ 9 | 18 | 6 9 | 0 6 0 | * * 720N * | 2 0 0 0 2 | 1 2 1 x3o . . x . x & ♦ 12 | 24 | 4 15 | 0 4 3 | * * * 2160N | 0 0 0 1 2 | 0 2 1 --------------------+-----+-------+-------------+-------------------+-----------------------+------------------------+---------- x3o3o3o3x . . & ♦ 30 | 120 | 120 90 | 60 120 0 | 12 30 20 0 | 72N * * * * | 1 1 0 x3o3o3o . *c3o . & ♦ 10 | 40 | 80 0 | 80 0 0 | 32 0 0 0 | * 27N * * * | 2 0 0 x3o3o3o . . x & ♦ 10 | 25 | 20 10 | 10 10 0 | 2 5 0 0 | * * 432N * * | 1 1 0 x3o3o . x . x & ♦ 16 | 40 | 16 28 | 4 16 6 | 0 4 0 4 | * * * 540N * | 0 2 0 x3o . o3x . x & ♦ 18 | 45 | 12 36 | 0 18 9 | 0 0 2 6 | * * * * 720N | 0 1 1 --------------------+-----+-------+-------------+-------------------+-----------------------+------------------------+---------- x3o3o3o3x *c3o . & ♦ 270 | 2160 | 4320 2160 | 4320 4320 0 | 1728 2160 720 0 | 72 54 432 0 0 | N * * x3o3o3o3x . x & ♦ 60 | 270 | 240 300 | 120 360 90 | 24 120 40 120 | 2 0 12 30 20 | * 36N * x3o . o3x o3x ♦ 27 | 81 | 27 81 | 0 54 27 | 0 0 9 27 | 0 0 0 0 9 | * * 80N
© 2004-2024 | top of page |