Acronym | quad pagaxhi |
Name | quasidisprismatogrand hexacosihecatonicosachoron |
Cross sections |
© |
Circumradius | sqrt[3-sqrt(5)] = 0.874032 |
General of army | hi |
Colonel of regiment | gadtaxady |
Face vector | 2400, 7200, 7440, 2640 |
Confer |
|
External links |
The quasidisprismatogrand hexacosihecatonicosachoron is an edge-faceting of the grand ditetrahedronary hexacosidishecatonicosachoron (gadtaxady). As such it is a fissary polychoron (Type A), as its vertices are coincident by 4 (each vertex figure then is vo3ox&#q) and edges are coincident by pairs. Thus it looks like Type B. Its vertex figure then is a compound faceting of v3o3x.
As abstract polytope quad pagaxhi is isomorphic to saquid paxhi, thereby replacing pentagrams by pentagons, resp. replacing gissid by doe and stip by pip.
Incidence matrix according to Dynkin symbol
x3o3o5/2x – Type A . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 ----------+------+-----------+----------------+----------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 ----------+------+-----------+----------------+----------------- x3o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x | 4 | 2 2 | * 3600 * | 0 1 1 0 . . o5/2x | 5 | 0 5 | * * 1440 | 0 0 1 1 ----------+------+-----------+----------------+----------------- x3o3o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3o . x ♦ 6 | 6 3 | 2 3 0 | * 1200 * * x . o5/2x ♦ 10 | 5 10 | 0 5 2 | * * 720 * . o3o5/2x ♦ 20 | 0 30 | 0 0 12 | * * * 120
x3o3/2o5/3x – Type A . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 ------------+------+-----------+----------------+----------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 ------------+------+-----------+----------------+----------------- x3o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x | 4 | 2 2 | * 3600 * | 0 1 1 0 . . o5/3x | 5 | 0 5 | * * 1440 | 0 0 1 1 ------------+------+-----------+----------------+----------------- x3o3/2o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3o . x ♦ 6 | 6 3 | 2 3 0 | * 1200 * * x . o5/3x ♦ 10 | 5 10 | 0 5 2 | * * 720 * . o3/2o5/3x ♦ 20 | 0 30 | 0 0 12 | * * * 120
x3/2o3o5/3x – Type A . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 ------------+------+-----------+----------------+----------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 ------------+------+-----------+----------------+----------------- x3/2o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x | 4 | 2 2 | * 3600 * | 0 1 1 0 . . o5/3x | 5 | 0 5 | * * 1440 | 0 0 1 1 ------------+------+-----------+----------------+----------------- x3/2o3o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3/2o . x ♦ 6 | 6 3 | 2 3 0 | * 1200 * * x . o5/3x ♦ 10 | 5 10 | 0 5 2 | * * 720 * . o3o5/3x ♦ 20 | 0 30 | 0 0 12 | * * * 120
x3/2o3/2o5/2x – Type A . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 --------------+------+-----------+----------------+----------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 --------------+------+-----------+----------------+----------------- x3/2o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x | 4 | 2 2 | * 3600 * | 0 1 1 0 . . o5/2x | 5 | 0 5 | * * 1440 | 0 0 1 1 --------------+------+-----------+----------------+----------------- x3/2o3/2o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3/2o . x ♦ 6 | 6 3 | 2 3 0 | * 1200 * * x . o5/2x ♦ 10 | 5 10 | 0 5 2 | * * 720 * . o3/2o5/2x ♦ 20 | 0 30 | 0 0 12 | * * * 120
Type B 600 | 12 | 12 24 12 | 4 12 12 4 -----+------+----------------+----------------- 2 | 3600 | 2 4 2 | 1 3 3 1 -----+------+----------------+----------------- 3 | 3 | 2400 * * | 1 1 0 0 4 | 4 | * 3600 * | 0 1 1 0 5 | 5 | * * 1440 | 0 0 1 1 -----+------+----------------+----------------- ♦ 4 | 6 | 4 0 0 | 600 * * * ♦ 6 | 9 | 2 3 0 | * 1200 * * ♦ 10 | 15 | 0 5 2 | * * 720 * ♦ 20 | 30 | 0 0 12 | * * * 120
© 2004-2025 | top of page |