Acronym | sadit |
Name |
snub icositetrachoric tetracomb, Gosset's non-Wythoffian tetracomb |
Vertex figure |
© |
Confer | |
External links |
Although this tetracomb is non-Wythoffian, but still uniform, and, because all its faces are triangles only, it clearly allows for an ambification like the regular polytopes. Its according outcome then would be risadit.
Incidence matrix according to Dynkin symbol
o3o3o4s3s (N → ∞) demi( . . . . . ) | 24N ♦ 6 8 | 4 12 18 | 4 6 4 16 | 1 4 5 ------------------+-----+---------+--------------+-----------------+--------- . . o4s . | 2 | 72N * | 0 4 2 | 2 1 2 4 | 1 2 2 sefa( . . . s3s ) | 2 | * 96N | 1 0 3 | 0 3 0 3 | 0 3 1 ------------------+-----+---------+--------------+-----------------+--------- . . . s3s | 3 | 0 3 | 32N * * | 0 3 0 0 | 0 3 0 sefa( . o3o4s . ) | 3 | 3 0 | * 96N * | 1 0 1 1 | 1 1 1 sefa( . . o4s3s ) | 3 | 1 2 | * * 144N | 0 1 0 2 | 0 2 1 ------------------+-----+---------+--------------+-----------------+--------- . o3o4s . ♦ 4 | 6 0 | 0 4 0 | 24N * * * | 1 1 0 . . o4s3s ♦ 12 | 6 24 | 8 0 12 | * 12N * * | 0 2 0 sefa( o3o3o4s . ) ♦ 4 | 6 0 | 0 4 0 | * * 24N * | 1 0 1 sefa( . o3o4s3s ) ♦ 4 | 3 3 | 0 1 3 | * * * 96N | 0 1 1 ------------------+-----+---------+--------------+-----------------+--------- o3o3o4s . ♦ 8 | 24 0 | 0 32 0 | 8 0 8 0 | 3N * * . o3o4s3s ♦ 96 | 144 288 | 96 96 288 | 24 24 0 96 | * N * sefa( o3o3o4s3s ) ♦ 5 | 6 4 | 0 4 6 | 0 0 1 4 | * * 24N starting figure: o3o3o4x3x
s3s3s4o3o (N → ∞) demi( . . . . . ) | 96N ♦ 3 3 2 6 | 1 3 9 9 9 3 | 3 3 3 1 12 4 4 | 3 1 1 5 ------------------+-----+--------------------+----------------------------+------------------------------+------------- s 2 s . . | 2 | 144N * * * | 0 0 2 4 0 0 | 1 2 0 0 4 2 0 | 2 1 0 2 . . s4o . | 2 | * 144N * * | 0 0 0 2 2 2 | 0 1 1 1 2 2 2 | 1 1 1 2 sefa( s3s . . . ) | 2 | * * 96N * | 1 0 3 0 0 0 | 3 0 0 0 3 0 0 | 3 0 0 1 sefa( . s3s . . ) | 2 | * * * 288N | 0 1 1 0 2 0 | 1 0 2 0 2 0 1 | 2 0 1 1 ------------------+-----+--------------------+----------------------------+------------------------------+------------- s3s . . . | 3 | 0 0 3 0 | 32N * * * * * | 3 0 0 0 0 0 0 | 3 0 0 0 . s3s . . | 3 | 0 0 0 3 | * 96N * * * * | 1 0 2 0 0 0 0 | 2 0 1 0 sefa( s3s3s . . ) | 3 | 1 0 1 1 | * * 288N * * * | 1 0 0 0 2 0 0 | 2 0 0 1 sefa( s 2 s4o . ) | 3 | 2 1 0 0 | * * * 288N * * | 0 1 0 0 1 1 0 | 1 1 0 1 sefa( . s3s4o . ) | 3 | 0 1 0 2 | * * * * 288N * | 0 0 1 0 1 0 1 | 1 0 1 1 sefa( . . s4o3o ) | 3 | 0 3 0 0 | * * * * * 96N | 0 0 0 1 0 1 1 | 0 1 1 1 ------------------+-----+--------------------+----------------------------+------------------------------+------------- s3s3s . . ♦ 12 | 6 0 12 12 | 4 4 12 0 0 0 | 24N * * * * * * | 2 0 0 0 s 2 s4o . ♦ 4 | 4 2 0 0 | 0 0 0 4 0 0 | * 72N * * * * * | 1 1 0 0 . s3s4o . ♦ 12 | 0 6 0 24 | 0 8 0 0 12 0 | * * 24N * * * * | 1 0 1 0 . . s4o3o ♦ 4 | 0 6 0 0 | 0 0 0 0 0 4 | * * * 24N * * * | 0 1 1 0 sefa( s3s3s4o . ) ♦ 4 | 2 1 1 2 | 0 0 2 1 1 0 | * * * * 288N * * | 1 0 0 1 sefa( s 2 s4o3o ) ♦ 4 | 3 3 0 0 | 0 0 0 3 0 1 | * * * * * 96N * | 0 1 0 1 sefa( . s3s4o3o ) ♦ 4 | 0 3 0 3 | 0 0 0 0 3 1 | * * * * * * 96N | 0 0 1 1 ------------------+-----+--------------------+----------------------------+------------------------------+------------- s3s3s4o . ♦ 96 | 96 48 96 192 | 32 64 192 96 96 0 | 16 24 8 0 96 0 0 | 3N * * * s 2 s4o3o ♦ 8 | 12 12 0 0 | 0 0 0 24 0 8 | 0 6 0 2 0 8 0 | * 12N * * . s3s4o3o ♦ 96 | 0 144 0 288 | 0 96 0 0 288 96 | 0 0 24 24 0 0 96 | * * N * sefa( s3s3s4o3o ) ♦ 5 | 3 3 1 3 | 0 0 3 3 3 1 | 0 0 0 0 3 1 1 | * * * 96N starting figure: x3x3x4o3o
o4s3s3s4o (N → ∞) demi( . . . . . ) | 48N ♦ 1 4 1 4 4 | 2 2 3 6 12 6 3 | 1 2 4 2 1 8 4 8 | 2 1 2 5 ------------------+-----+---------------------+------------------------------+-------------------------------+----------- o4s . . . | 2 | 24N * * * * | 0 0 2 4 0 0 0 | 1 2 0 0 0 4 2 0 | 2 1 0 1 . s 2 s . | 2 | * 96N * * * | 0 0 0 2 2 2 0 | 0 1 1 1 0 2 2 2 | 1 1 1 2 . . . s4o | 2 | * * 24N * * | 0 0 0 0 0 4 2 | 0 0 0 2 1 0 2 4 | 0 1 2 2 sefa( . s3s . . ) | 2 | * * * 96N * | 1 0 1 0 2 0 0 | 1 0 2 0 0 2 0 1 | 2 0 1 1 sefa( . . s3s . ) | 2 | * * * * 96N | 0 1 0 0 2 0 1 | 0 0 2 0 1 1 0 2 | 1 0 2 1 ------------------+-----+---------------------+------------------------------+-------------------------------+----------- . s3s . . | 3 | 0 0 0 3 0 | 32N * * * * * * | 1 0 2 0 0 0 0 0 | 2 0 1 0 . . s3s . | 3 | 0 0 0 0 3 | * 32N * * * * * | 0 0 2 0 1 0 0 0 | 1 0 2 0 sefa( o4s3s . . ) | 3 | 1 0 0 2 0 | * * 48N * * * * | 1 0 0 0 0 2 0 0 | 2 0 0 1 sefa( o4s 2 s . ) | 3 | 1 2 0 0 0 | * * * 96N * * * | 0 1 0 0 0 1 1 0 | 1 1 0 1 sefa( . s3s3s . ) | 3 | 0 1 0 1 1 | * * * * 192N * * | 0 0 1 0 0 1 0 1 | 1 0 1 1 sefa( . s 2 s4o ) | 3 | 0 2 1 0 0 | * * * * * 96N * | 0 0 0 1 0 0 1 1 | 0 1 1 1 sefa( . . s3s4o ) | 3 | 0 0 1 0 2 | * * * * * * 48N | 0 0 0 0 1 0 0 2 | 0 0 2 1 ------------------+-----+---------------------+------------------------------+-------------------------------+----------- o4s3s . . ♦ 12 | 6 0 0 24 0 | 8 0 12 0 0 0 0 | 4N * * * * * * * | 2 0 0 0 o4s 2 s . ♦ 4 | 2 4 0 0 0 | 0 0 0 4 0 0 0 | * 24N * * * * * * | 1 1 0 0 . s3s3s . ♦ 12 | 0 6 0 12 12 | 4 4 0 0 12 0 0 | * * 16N * * * * * | 1 0 1 0 . s 2 s4o ♦ 4 | 0 4 2 0 0 | 0 0 0 0 0 4 0 | * * * 24N * * * * | 0 1 1 0 . . s3s4o ♦ 12 | 0 0 6 0 24 | 0 8 0 0 0 0 12 | * * * * 4N * * * | 0 0 2 0 sefa( o4s3s3s . ) ♦ 4 | 1 2 0 2 1 | 0 0 1 1 2 0 0 | * * * * * 96N * * | 1 0 0 1 sefa( o4s 2 s4o ) ♦ 4 | 1 4 1 0 0 | 0 0 0 2 0 2 0 | * * * * * * 48N * | 0 1 0 1 sefa( . s3s3s4o ) ♦ 4 | 0 2 1 1 2 | 0 0 0 0 2 1 1 | * * * * * * * 96N | 0 0 1 1 ------------------+-----+---------------------+------------------------------+-------------------------------+----------- o4s3s3s . ♦ 96 | 48 96 0 192 96 | 64 32 96 96 192 0 0 | 8 24 16 0 0 96 0 0 | N * * * o4s 2 s4o ♦ 8 | 4 16 4 0 0 | 0 0 0 16 0 16 0 | 0 4 0 4 0 0 8 0 | * 6N * * . s3s3s4o ♦ 96 | 0 96 48 96 192 | 32 64 0 0 192 96 96 | 0 0 16 24 8 0 0 96 | * * N * sefa( o4s3s3s4o ) ♦ 5 | 1 4 1 2 2 | 0 0 1 2 4 2 1 | 0 0 0 0 0 2 1 2 | * * * 48N starting figure: o4x3x3x4o
s3s3s *b3s4o (N → ∞) demi( . . . . . ) | 96N ♦ 1 2 2 1 2 2 4 | 1 1 2 3 6 6 3 6 3 3 | 1 2 2 1 2 1 1 8 4 4 4 | 2 1 1 1 5 ---------------------+-----+------------------------------+--------------------------------------------+--------------------------------------------+--------------- s 2 s . . | 2 | 48N * * * * * * | 0 0 0 2 0 4 0 0 0 0 | 1 0 2 0 0 0 0 4 0 2 0 | 2 0 1 0 2 s . 2 s . | 2 | * 96N * * * * * | 0 0 0 0 2 2 2 0 0 0 | 0 1 1 1 0 0 0 2 2 2 0 | 1 1 1 0 2 . . s 2 s . | 2 | * * 96N * * * * | 0 0 0 0 0 2 0 2 0 2 | 0 0 1 0 1 0 1 2 0 2 2 | 1 0 1 1 2 . . . s4o | 2 | * * * 48N * * * | 0 0 0 0 0 0 2 0 2 2 | 0 0 0 1 0 1 1 0 2 2 2 | 0 1 1 1 2 sefa( s3s . . . ) | 2 | * * * * 96N * * | 1 0 0 1 2 0 0 0 0 0 | 1 2 0 0 0 0 0 2 1 0 0 | 2 1 0 0 1 sefa( . s3s . . ) | 2 | * * * * * 96N * | 0 1 0 1 0 0 0 2 0 0 | 1 0 0 0 2 0 0 2 0 0 1 | 2 0 0 1 1 sefa( . s . *b3s . ) | 2 | * * * * * * 192N | 0 0 1 0 1 0 0 1 1 0 | 0 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 ---------------------+-----+------------------------------+--------------------------------------------+--------------------------------------------+--------------- s3s . . . | 3 | 0 0 0 0 3 0 0 | 32N * * * * * * * * * | 1 2 0 0 0 0 0 0 0 0 0 | 2 1 0 0 0 . s3s . . | 3 | 0 0 0 0 0 3 0 | * 32N * * * * * * * * | 1 0 0 0 2 0 0 0 0 0 0 | 2 0 0 1 0 . s . *b3s . | 3 | 0 0 0 0 0 0 3 | * * 64N * * * * * * * | 0 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 sefa( s3s3s . . ) | 3 | 1 0 0 0 1 1 0 | * * * 96N * * * * * * | 1 0 0 0 0 0 0 2 0 0 0 | 2 0 0 0 1 sefa( s3s . *b3s . ) | 3 | 0 1 0 0 1 0 1 | * * * * 192N * * * * * | 0 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 sefa( s 2 s 2 s . ) | 3 | 1 1 1 0 0 0 0 | * * * * * 192N * * * * | 0 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 sefa( s . 2 s4o ) | 3 | 0 2 0 1 0 0 0 | * * * * * * 96N * * * | 0 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 sefa( . s3s *b3s . ) | 3 | 0 0 1 0 0 1 1 | * * * * * * * 192N * * | 0 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 sefa( . s . *b3s4o ) | 3 | 0 0 0 1 0 0 2 | * * * * * * * * 96N * | 0 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 sefa( . . s 2 s4o ) | 3 | 0 0 2 1 0 0 0 | * * * * * * * * * 96N | 0 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ---------------------+-----+------------------------------+--------------------------------------------+--------------------------------------------+--------------- s3s3s . . ♦ 12 | 6 0 0 0 12 12 0 | 4 4 0 12 0 0 0 0 0 0 | 8N * * * * * * * * * * | 2 0 0 0 0 s3s . *b3s . ♦ 12 | 0 6 0 0 12 0 12 | 4 0 4 0 12 0 0 0 0 0 | * 16N * * * * * * * * * | 1 1 0 0 0 s 2 s 2 s . ♦ 4 | 2 2 2 0 0 0 0 | 0 0 0 0 0 4 0 0 0 0 | * * 48N * * * * * * * * | 1 0 1 0 0 s . 2 s4o ♦ 4 | 0 4 0 2 0 0 0 | 0 0 0 0 0 0 4 0 0 0 | * * * 24N * * * * * * * | 0 1 1 0 0 . s3s *b3s . ♦ 12 | 0 0 6 0 0 12 12 | 0 4 4 0 0 0 0 12 0 0 | * * * * 16N * * * * * * | 1 0 0 1 0 . s . *b3s4o ♦ 12 | 0 0 0 6 0 0 24 | 0 0 8 0 0 0 0 0 12 0 | * * * * * 8N * * * * * | 0 1 0 1 0 . . s 2 s4o ♦ 4 | 0 0 4 2 0 0 0 | 0 0 0 0 0 0 0 0 0 4 | * * * * * * 24N * * * * | 0 0 1 1 0 sefa( s3s3s *b3s . ) ♦ 4 | 1 1 1 0 1 1 1 | 0 0 0 1 1 1 0 1 0 0 | * * * * * * * 192N * * * | 1 0 0 0 1 sefa( s3s . *b3s4o ) ♦ 4 | 0 2 0 1 1 0 2 | 0 0 0 0 2 0 1 0 1 0 | * * * * * * * * 96N * * | 0 1 0 0 1 sefa( s 2 s 2 s4o ) ♦ 4 | 1 2 2 1 0 0 0 | 0 0 0 0 0 2 1 0 0 1 | * * * * * * * * * 96N * | 0 0 1 0 1 sefa( . s3s *b3s4o ) ♦ 4 | 0 0 2 1 0 1 2 | 0 0 0 0 0 0 0 2 1 1 | * * * * * * * * * * 96N | 0 0 0 1 1 ---------------------+-----+------------------------------+--------------------------------------------+--------------------------------------------+--------------- s3s3s *b3s . ♦ 96 | 48 48 48 0 96 96 96 | 32 32 32 96 96 96 0 96 0 0 | 8 8 24 0 8 0 0 96 0 0 0 | 2N * * * * s3s . *b3s4o ♦ 96 | 0 96 0 48 96 0 192 | 32 0 64 0 192 0 96 0 96 0 | 0 16 0 24 0 8 0 0 96 0 0 | * N * * * s 2 s 2 s4o ♦ 8 | 4 8 8 4 0 0 0 | 0 0 0 0 0 16 8 0 0 8 | 0 0 4 2 0 0 2 0 0 8 0 | * * 12N * * . s3s *b3s4o ♦ 96 | 0 0 96 48 0 96 192 | 0 32 64 0 0 0 0 192 96 96 | 0 0 0 0 16 8 24 0 0 0 96 | * * * N * sefa( s3s3s *b3s4o ) ♦ 5 | 1 2 2 1 1 1 2 | 0 0 0 1 2 2 1 2 1 1 | 0 0 0 0 0 0 0 2 1 1 1 | * * * * 96N starting figure: x3x3x *b3x4o
s3s3s *b3s *b3s (N → ∞) demi( . . . . . ) | 96N ♦ 1 1 1 1 1 1 2 2 2 2 | 1 1 1 1 3 3 3 3 3 3 3 3 3 3 | 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 | 1 1 1 1 1 5 ------------------------+-----+-----------------------------------------+---------------------------------------------------------+-------------------------------------------------------+---------------- s 2 s . . | 2 | 48N * * * * * * * * * | 0 0 0 0 2 0 0 2 2 0 0 0 0 0 | 1 0 0 1 1 0 0 0 0 0 2 2 0 2 0 | 1 1 0 1 0 1 s . 2 s . | 2 | * 48N * * * * * * * * | 0 0 0 0 0 2 0 2 0 2 0 0 0 0 | 0 1 0 1 0 1 0 0 0 0 2 0 2 2 0 | 1 0 1 1 0 1 s . . 2 . s | 2 | * * 48N * * * * * * * | 0 0 0 0 0 0 2 0 2 2 0 0 0 0 | 0 0 1 0 1 1 0 0 0 0 0 2 2 2 0 | 0 1 1 1 0 1 . . s 2 s . | 2 | * * * 48N * * * * * * | 0 0 0 0 0 0 0 2 0 0 2 0 0 2 | 0 0 0 1 0 0 1 0 0 1 2 0 0 2 2 | 1 0 0 1 1 1 . . s 2 s | 2 | * * * * 48N * * * * * | 0 0 0 0 0 0 0 0 2 0 0 2 0 2 | 0 0 0 0 1 0 0 1 0 1 0 2 0 2 2 | 0 1 0 1 1 1 . . . s 2 s | 2 | * * * * * 48N * * * * | 0 0 0 0 0 0 0 0 0 2 0 0 2 2 | 0 0 0 0 0 1 0 0 1 1 0 0 2 2 2 | 0 0 1 1 1 1 sefa( s3s . . . ) | 2 | * * * * * * 96N * * * | 1 0 0 0 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 | 1 1 1 0 0 1 sefa( . s3s . . ) | 2 | * * * * * * * 96N * * | 0 1 0 0 1 0 0 0 0 0 1 1 0 0 | 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 | 1 1 0 0 1 1 sefa( . s . *b3s . ) | 2 | * * * * * * * * 96N * | 0 0 1 0 0 1 0 0 0 0 1 0 1 0 | 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 | 1 0 1 0 1 1 sefa( . s . . *b3s ) | 2 | * * * * * * * * * 96N | 0 0 0 1 0 0 1 0 0 0 0 1 1 0 | 0 0 1 0 0 0 0 1 1 0 0 1 1 0 1 | 0 1 1 0 1 1 ------------------------+-----+-----------------------------------------+---------------------------------------------------------+-------------------------------------------------------+---------------- s3s . . . | 3 | 0 0 0 0 0 0 3 0 0 0 | 32N * * * * * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 . s3s . . | 3 | 0 0 0 0 0 0 0 3 0 0 | * 32N * * * * * * * * * * * * | 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 | 1 1 0 0 1 0 . s . *b3s . | 3 | 0 0 0 0 0 0 0 0 3 0 | * * 32N * * * * * * * * * * * | 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 | 1 0 1 0 1 0 . s . . *b3s | 3 | 0 0 0 0 0 0 0 0 0 3 | * * * 32N * * * * * * * * * * | 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 | 0 1 1 0 1 0 sefa( s3s3s . . ) | 3 | 1 0 0 0 0 0 1 1 0 0 | * * * * 96N * * * * * * * * * | 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 | 1 1 0 0 0 1 sefa( s3s . *b3s . ) | 3 | 0 1 0 0 0 0 1 0 1 0 | * * * * * 96N * * * * * * * * | 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 | 1 0 1 0 0 1 sefa( s3s . . *b3s ) | 3 | 0 0 1 0 0 0 1 0 0 1 | * * * * * * 96N * * * * * * * | 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 | 0 1 1 0 0 1 sefa( s 2 s 2 s . ) | 3 | 1 1 0 1 0 0 0 0 0 0 | * * * * * * * 96N * * * * * * | 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 | 1 0 0 1 0 1 sefa( s 2 s 2 s ) | 3 | 1 0 1 0 1 0 0 0 0 0 | * * * * * * * * 96N * * * * * | 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 | 0 1 0 1 0 1 sefa( s . 2 s 2 s ) | 3 | 0 1 1 0 0 1 0 0 0 0 | * * * * * * * * * 96N * * * * | 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 | 0 0 1 1 0 1 sefa( . s3s *b3s . ) | 3 | 0 0 0 1 0 0 0 1 1 0 | * * * * * * * * * * 96N * * * | 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 | 1 0 0 0 1 1 sefa( . s3s . *b3s ) | 3 | 0 0 0 0 1 0 0 1 0 1 | * * * * * * * * * * * 96N * * | 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 | 0 1 0 0 1 1 sefa( . s . *b3s *b3s ) | 3 | 0 0 0 0 0 1 0 0 1 1 | * * * * * * * * * * * * 96N * | 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 | 0 0 1 0 1 1 sefa( . . s 2 s 2 s ) | 3 | 0 0 0 1 1 1 0 0 0 0 | * * * * * * * * * * * * * 96N | 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 | 0 0 0 1 1 1 ------------------------+-----+-----------------------------------------+---------------------------------------------------------+-------------------------------------------------------+---------------- s3s3s . . ♦ 12 | 6 0 0 0 0 0 12 12 0 0 | 4 4 0 0 12 0 0 0 0 0 0 0 0 0 | 8N * * * * * * * * * * * * * * | 1 1 0 0 0 0 s3s . *b3s . ♦ 12 | 0 6 0 0 0 0 12 0 12 0 | 4 0 4 0 0 12 0 0 0 0 0 0 0 0 | * 8N * * * * * * * * * * * * * | 1 0 1 0 0 0 s3s . . *b3s ♦ 12 | 0 0 6 0 0 0 12 0 0 12 | 4 0 0 4 0 0 12 0 0 0 0 0 0 0 | * * 8N * * * * * * * * * * * * | 0 1 1 0 0 0 s 2 s 2 s . ♦ 4 | 2 2 0 2 0 0 0 0 0 0 | 0 0 0 0 0 0 0 4 0 0 0 0 0 0 | * * * 24N * * * * * * * * * * * | 1 0 0 1 0 0 s 2 s 2 s ♦ 4 | 2 0 2 0 2 0 0 0 0 0 | 0 0 0 0 0 0 0 0 4 0 0 0 0 0 | * * * * 24N * * * * * * * * * * | 0 1 0 1 0 0 s . 2 s 2 s ♦ 4 | 0 2 2 0 0 2 0 0 0 0 | 0 0 0 0 0 0 0 0 0 4 0 0 0 0 | * * * * * 24N * * * * * * * * * | 0 0 1 1 0 0 . s3s *b3s . ♦ 12 | 0 0 0 6 0 0 0 12 12 0 | 0 4 4 0 0 0 0 0 0 0 12 0 0 0 | * * * * * * 8N * * * * * * * * | 1 0 0 0 1 0 . s3s . *b3s ♦ 12 | 0 0 0 0 6 0 0 12 0 12 | 0 4 0 4 0 0 0 0 0 0 0 12 0 0 | * * * * * * * 8N * * * * * * * | 0 1 0 0 1 0 . s . *b3s *b3s ♦ 12 | 0 0 0 0 0 6 0 0 12 12 | 0 0 4 4 0 0 0 0 0 0 0 0 12 0 | * * * * * * * * 8N * * * * * * | 0 0 1 0 1 0 . . s 2 s 2 s ♦ 4 | 0 0 0 2 2 2 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 4 | * * * * * * * * * 24N * * * * * | 0 0 0 1 1 0 sefa( s3s3s *b3s . ) ♦ 4 | 1 1 0 1 0 0 1 1 1 0 | 0 0 0 0 1 1 0 1 0 0 1 0 0 0 | * * * * * * * * * * 96N * * * * | 1 0 0 0 0 1 sefa( s3s3s . *b3s ) ♦ 4 | 1 0 1 0 1 0 1 1 0 1 | 0 0 0 0 1 0 1 0 1 0 0 1 0 0 | * * * * * * * * * * * 96N * * * | 0 1 0 0 0 1 sefa( s3s . *b3s *b3s ) ♦ 4 | 0 1 1 0 0 1 1 0 1 1 | 0 0 0 0 0 1 1 0 0 1 0 0 1 0 | * * * * * * * * * * * * 96N * * | 0 0 1 0 0 1 sefa( s 2 s 2 s 2 s ) ♦ 4 | 1 1 1 1 1 1 0 0 0 0 | 0 0 0 0 0 0 0 1 1 1 0 0 0 1 | * * * * * * * * * * * * * 96N * | 0 0 0 1 0 1 sefa( . s3s *b3s *b3s ) ♦ 4 | 0 0 0 1 1 1 0 1 1 1 | 0 0 0 0 0 0 0 0 0 0 1 1 1 1 | * * * * * * * * * * * * * * 96N | 0 0 0 0 1 1 ------------------------+-----+-----------------------------------------+---------------------------------------------------------+-------------------------------------------------------+---------------- s3s3s *b3s . ♦ 96 | 48 48 0 48 0 0 96 96 96 0 | 32 32 32 0 96 96 0 96 0 0 96 0 0 0 | 8 8 0 24 0 0 8 0 0 0 96 0 0 0 0 | N * * * * * s3s3s . *b3s ♦ 96 | 48 0 48 0 48 0 96 96 0 96 | 32 32 0 32 96 0 96 0 96 0 0 96 0 0 | 8 0 8 0 24 0 0 8 0 0 0 96 0 0 0 | * N * * * * s3s . *b3s *b3s ♦ 96 | 0 48 48 0 0 48 96 0 96 96 | 32 0 32 32 0 96 96 0 0 96 0 0 96 0 | 0 8 8 0 0 24 0 0 8 0 0 0 96 0 0 | * * N * * * s 2 s 2 s 2 s ♦ 8 | 4 4 4 4 4 4 0 0 0 0 | 0 0 0 0 0 0 0 8 8 8 0 0 0 8 | 0 0 0 2 2 2 0 0 0 2 0 0 0 8 0 | * * * 12N * * . s3s *b3s *b3s ♦ 96 | 0 0 0 48 48 48 0 96 96 96 | 0 32 32 32 0 0 0 0 0 0 96 96 96 96 | 0 0 0 0 0 0 8 8 8 24 0 0 0 0 96 | * * * * N * sefa( s3s3s *b3s *b3s ) ♦ 5 | 1 1 1 1 1 1 1 1 1 1 | 0 0 0 0 1 1 1 1 1 1 1 1 1 1 | 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 | * * * * * 96N starting figure: x3x3x *b3x *b3x
© 2004-2024 | top of page |