Acronym | risadit |
Name | rectified/ambified snub icositetrachoric tetracomb |
Confer |
|
Although sadit is a non-Wythoffian but still uniform tetracomb, and, because all its faces are triangles only, it clearly allows for an ambification like the regular polytopes. Its according outcome then is this tetracomb.
Incidence matrix according to Dynkin symbol
(N → ∞) mids( . . o4s . ) | 72N * | 0 8 0 4 | 0 4 2 4 2 4 0 8 | 2 1 2 4 2 4 0 4 | 1 2 2 2 mids( sefa( . . . s3s ) ) | * 96N | 2 0 3 3 | 1 0 3 0 6 0 3 3 | 0 3 0 3 0 6 1 1 | 0 3 1 2 ---------------------------+---------+--------------------+------------------------------------+---------------------------------+------------- verf( . . . s3s ) | 0 2 | 96N * * * | 1 0 0 0 3 0 0 0 | 0 3 0 0 0 3 0 0 | 0 3 0 1 verf( sefa( . o3o4s . ) ) | 2 0 | * 288N * * | 0 1 0 1 0 1 0 1 | 1 0 1 1 1 1 0 1 | 1 1 1 1 verfA( sefa( . . o4s3s ) ) | 0 2 | * * 144N * | 0 0 1 0 1 0 2 0 | 0 1 0 2 0 2 1 0 | 0 2 1 1 verfB( sefa( . . o4s3s ) ) | 1 1 | * * * 288N | 0 0 1 0 1 0 0 2 | 0 1 0 2 0 2 0 1 | 0 2 1 1 ---------------------------+---------+--------------------+------------------------------------+---------------------------------+------------- rect( . . . s3s ) | 0 3 | 3 0 0 0 | 32N * * * * * * * | 0 3 0 0 0 0 0 0 | 0 3 0 0 rect( sefa( . o3o4s . ) ) | 3 0 | 0 3 0 0 | * 96N * * * * * * | 1 0 1 1 0 0 0 0 | 1 1 1 0 rect( sefa( . . o4s3s ) ) | 1 2 | 0 0 1 2 | * * 144N * * * * * | 0 1 0 2 0 0 0 0 | 0 2 1 0 verf( . o3o4s . ) | 3 0 | 0 3 0 0 | * * * 96N * * * * | 1 0 0 0 1 1 0 0 | 1 1 0 1 verf( . . o4s3s ) | 1 4 | 2 0 1 2 | * * * * 144N * * * | 0 1 0 0 0 2 0 0 | 0 2 0 1 verf( sefa( o3o3o4s . ) ) | 3 0 | 0 3 0 0 | * * * * * 96N * * | 0 0 1 0 1 0 0 1 | 1 0 1 1 verfA( sefa( . o3o4s3s ) ) | 0 3 | 0 0 3 0 | * * * * * * 96N * | 0 0 0 1 0 1 1 0 | 0 1 1 1 verfB( sefa( . o3o4s3s ) ) | 2 1 | 0 1 0 2 | * * * * * * * 288N | 0 0 0 1 0 1 0 1 | 0 1 1 1 ---------------------------+---------+--------------------+------------------------------------+---------------------------------+------------- rect( . o3o4s . ) ♦ 6 0 | 0 12 0 0 | 0 4 0 4 0 0 0 0 | 24N * * * * * * * | 1 1 0 0 rect( . . o4s3s ) ♦ 6 24 | 24 0 12 24 | 8 0 12 0 12 0 0 0 | * 12N * * * * * * | 0 2 0 0 rect( sefa( o3o3o4s . ) ) ♦ 6 0 | 0 12 0 0 | 0 4 0 0 0 4 0 0 | * * 24N * * * * * | 1 0 1 0 rect( sefa( . o3o4s3s ) ) ♦ 3 3 | 0 3 3 6 | 0 1 3 0 0 0 1 3 | * * * 96N * * * * | 0 1 1 0 verf( o3o3o4s . ) ♦ 6 0 | 0 12 0 0 | 0 0 0 4 0 4 0 0 | * * * * 24N * * * | 1 0 0 1 verf( . o3o4s3s ) ♦ 3 6 | 3 3 3 6 | 0 0 0 1 3 0 1 3 | * * * * * 96N * * | 0 1 0 1 verfA( sefa( o3o3o4s3s ) ) ♦ 0 4 | 0 0 6 0 | 0 0 0 0 0 0 4 0 | * * * * * * 24N * | 0 0 1 1 verfB( sefa( o3o3o4s3s ) ) ♦ 3 1 | 0 3 0 3 | 0 0 0 0 0 1 0 3 | * * * * * * * 96N | 0 0 1 1 ---------------------------+---------+--------------------+------------------------------------+---------------------------------+------------- rect( o3o3o4s . ) ♦ 24 0 | 0 96 0 0 | 0 32 0 32 0 32 0 0 | 8 0 8 0 8 0 0 0 | 3N * * * rect( . o3o4s3s ) ♦ 144 288 | 288 288 288 576 | 96 96 288 96 288 0 96 288 | 24 24 0 96 0 96 0 0 | * N * * rect( sefa( o3o3o4s3s ) ) ♦ 6 4 | 0 12 6 12 | 0 4 6 0 0 4 4 12 | 0 0 1 4 0 0 1 4 | * * 24N * verf( o3o3o4s3s ) ♦ 6 8 | 4 12 6 12 | 0 0 0 4 6 4 4 12 | 0 0 0 0 1 4 1 4 | * * * 24N
© 2004-2024 | top of page |