Acronym ridimex (alt.: idimrox)
Name rectified icosidiminished hexacosachoron,
icosidiminished rectified hexacosachoron
Circumradius sqrt[5+2 sqrt(5)] = 3.077684
General of army (is itself convex)
Colonel of regiment (is itself locally convex)
Confer
uniform relative:
rox  
related segmentochora:
ikaid  
related CRFs:
idimex   tidimex   idimsrahi  

Just as idimex was obtained from ex by an spid-symmetric diminishing, i.e. chopping off ikepy-caps, ridimex is obtained from rox by a spid-symmetric diminishing, i.e. chopping off ikaid-caps.

Much more remarkable is that the non-uniform idimex allows for some of the same operations as regulars do: ridimex is nothing but the rectification operation being applied to it.


Incidence matrix

60   *   *   *  * |  2   4   4  0   0   0   0   0   0   0   0 |  1   2   4   2   4   2  0   0   0   0   0   0  0  0  0 |  2  1  2   2  0  0  0  A/2
 * 120   *   *  * |  0   0   0  1   2   2   1   0   0   0   0 |  0   0   0   0   0   0  1   2   2   1   2   1  0  0  0 |  0  0  1   1  2  1  0  B=C
 *   * 120   *  * |  0   2   0  0   0   2   0   2   2   0   0 |  0   2   1   0   2   0  0   1   2   0   1   2  1  0  0 |  1  0  1   2  1  1  0  D=E
 *   *   * 120  * |  0   0   2  0   2   0   0   2   0   2   0 |  0   0   0   2   2   2  0   2   2   2   0   0  0  0  0 |  0  1  2   2  1  0  0  F/2
 *   *   *   * 60 |  0   0   0  0   0   0   2   0   0   0   4 |  0   0   0   0   0   0  1   0   0   0   4   0  0  2  2 |  0  0  0   0  2  2  1  G/2
------------------+-------------------------------------------+--------------------------------------------------------+----------------------
 2   0   0   0  0 | 60   *   *  *   *   *   *   *   *   *   * |  1   0   2   0   0   0  0   0   0   0   0   0  0  0  0 |  2  0  1   0  0  0  0  AA'
 1   0   1   0  0 |  * 240   *  *   *   *   *   *   *   *   * |  0   1   1   0   1   0  0   0   0   0   0   0  0  0  0 |  1  0  1   1  0  0  0  AD
 1   0   0   1  0 |  *   * 240  *   *   *   *   *   *   *   * |  0   0   0   1   1   1  0   0   0   0   0   0  0  0  0 |  0  1  1   1  0  0  0  AF
 0   2   0   0  0 |  *   *   * 60   *   *   *   *   *   *   * |  0   0   0   0   0   0  1   2   0   0   0   0  0  0  0 |  0  0  1   0  2  0  0  BB'
 0   1   0   1  0 |  *   *   *  * 240   *   *   *   *   *   * |  0   0   0   0   0   0  0   1   1   1   0   0  0  0  0 |  0  0  1   1  1  0  0  BF
 0   1   1   0  0 |  *   *   *  *   * 240   *   *   *   *   * |  0   0   0   0   0   0  0   0   1   0   1   1  0  0  0 |  0  0  0   1  1  1  0  CE
 0   1   0   0  1 |  *   *   *  *   *   * 120   *   *   *   * |  0   0   0   0   0   0  1   0   0   0   2   0  0  0  0 |  0  0  0   0  2  1  0  CG
 0   0   1   1  0 |  *   *   *  *   *   *   * 240   *   *   * |  0   0   0   0   1   0  0   1   1   0   0   0  0  0  0 |  0  0  1   1  1  0  0  DF
 0   0   2   0  0 |  *   *   *  *   *   *   *   * 120   *   * |  0   1   0   0   0   0  0   0   0   0   0   1  1  0  0 |  1  0  0   1  0  1  0  EE'
 0   0   0   2  0 |  *   *   *  *   *   *   *   *   * 120   * |  0   0   0   1   0   1  0   0   0   1   0   0  0  0  0 |  0  1  1   1  0  0  0  FF'
 0   0   0   0  2 |  *   *   *  *   *   *   *   *   *   * 120 |  0   0   0   0   0   0  0   0   0   0   1   0  0  1  1 |  0  0  0   0  1  1  1  GG'
------------------+-------------------------------------------+--------------------------------------------------------+----------------------
 3   0   0   0  0 |  3   0   0  0   0   0   0   0   0   0   0 | 20   *   *   *   *   *  *   *   *   *   *   *  *  *  * |  2  0  0   0  0  0  0
 1   0   2   0  0 |  0   2   0  0   0   0   0   0   1   0   0 |  * 120   *   *   *   *  *   *   *   *   *   *  *  *  * |  1  0  0   1  0  0  0
 2   0   1   0  0 |  1   2   0  0   0   0   0   0   0   0   0 |  *   * 120   *   *   *  *   *   *   *   *   *  *  *  * |  1  0  1   0  0  0  0
 1   0   0   2  0 |  0   0   2  0   0   0   0   0   0   1   0 |  *   *   * 120   *   *  *   *   *   *   *   *  *  *  * |  0  1  0   1  0  0  0
 1   0   1   1  0 |  0   1   1  0   0   0   0   1   0   0   0 |  *   *   *   * 240   *  *   *   *   *   *   *  *  *  * |  0  0  1   1  0  0  0
 1   0   0   2  0 |  0   0   2  0   0   0   0   0   0   1   0 |  *   *   *   *   * 120  *   *   *   *   *   *  *  *  * |  0  1  1   0  0  0  0
 0   2   0   0  1 |  0   0   0  1   0   0   2   0   0   0   0 |  *   *   *   *   *   * 60   *   *   *   *   *  *  *  * |  0  0  0   0  2  0  0
 0   2   1   2  0 |  0   0   0  1   2   0   0   2   0   0   0 |  *   *   *   *   *   *  * 120   *   *   *   *  *  *  * |  0  0  1   0  1  0  0  {5}
 0   1   1   1  0 |  0   0   0  0   1   1   0   1   0   0   0 |  *   *   *   *   *   *  *   * 240   *   *   *  *  *  * |  0  0  0   1  1  0  0
 0   1   0   2  0 |  0   0   0  0   2   0   0   0   0   1   0 |  *   *   *   *   *   *  *   *   * 120   *   *  *  *  * |  0  0  1   1  0  0  0
 0   2   1   0  2 |  0   0   0  0   0   2   2   0   0   0   1 |  *   *   *   *   *   *  *   *   *   * 120   *  *  *  * |  0  0  0   0  1  1  0  {5}
 0   1   2   0  0 |  0   0   0  0   0   2   0   0   1   0   0 |  *   *   *   *   *   *  *   *   *   *   * 120  *  *  * |  0  0  0   1  0  1  0
 0   0   3   0  0 |  0   0   0  0   0   0   0   0   3   0   0 |  *   *   *   *   *   *  *   *   *   *   *   * 40  *  * |  1  0  0   0  0  1  0
 0   0   0   0  3 |  0   0   0  0   0   0   0   0   0   0   3 |  *   *   *   *   *   *  *   *   *   *   *   *  * 40  * |  0  0  0   0  1  0  1
 0   0   0   0  3 |  0   0   0  0   0   0   0   0   0   0   3 |  *   *   *   *   *   *  *   *   *   *   *   *  *  * 40 |  0  0  0   0  0  1  1
------------------+-------------------------------------------+--------------------------------------------------------+----------------------
 3   0   3   0  0 |  3   6   0  0   0   0   0   0   3   0   0 |  1   3   3   0   0   0  0   0   0   0   0   0  1  0  0 | 40  *  *   *  *  *  *  oct (3-ap sym)
 2   0   0   4  0 |  0   0   8  0   0   0   0   0   0   4   0 |  0   0   0   4   0   4  0   0   0   0   0   0  0  0  0 |  * 30  *   *  *  *  *  oct
 2   2   2   4  0 |  1   4   4  1   4   0   0   4   0   2   0 |  0   0   2   0   4   2  0   2   0   2   0   0  0  0  0 |  *  * 60   *  *  *  *  mibdi
 1   1   2   2  0 |  0   2   2  0   2   2   0   2   1   1   0 |  0   1   0   1   2   0  0   0   2   1   0   1  0  0  0 |  *  *  * 120  *  *  *  oct
 0  12   6   6  6 |  0   0   0  6  12  12  12  12   0   0   6 |  0   0   0   0   0   0  6   6  12   0   6   0  0  2  0 |  *  *  *   * 20  *  *  id
 0   3   3   0  3 |  0   0   0  0   0   6   3   0   3   0   3 |  0   0   0   0   0   0  0   0   0   0   3   3  1  0  1 |  *  *  *   *  * 40  *  teddi
 0   0   0   0  6 |  0   0   0  0   0   0   0   0   0   0  12 |  0   0   0   0   0   0  0   0   0   0   0   0  0  4  4 |  *  *  *   *  *  * 10  oct (tet sym)

© 2004-2018
top of page