| Acronym | tidimex (alt.: idimtex) |
| Name |
truncated icosidiminished hexacosachoron, icosidiminished truncated hexacosachoron |
| Circumradius | sqrt[(23+9 sqrt(5))/2] = 4.643523 |
| General of army | (is itself convex) |
| Colonel of regiment | (is itself locally convex) |
| Face vector | 960, 2280, 1640, 320 |
| Confer |
Just as idimex was obtained from ex by an spid-symmetric diminishing, i.e. chopping off ikepy-caps, tidimex is obtained from tex by a spid-symmetric diminishing, i.e. chopping off iktum-caps.
Much more remarkable is that the non-uniform idimex allows for some of the same operations as regulars do: tidimex is nothing but the truncation operation being applied to it. Moreover, it still is CRF.
120 * * * * * * | 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 2 2 2 1 0 0 0 0 0 0 0 0 0 | 2 1 1 2 0 0 0 A
* 120 * * * * * | 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 2 2 1 0 0 0 0 0 | 0 0 1 1 2 0 0 B
* * 120 * * * * | 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 0 2 0 2 1 0 0 0 | 0 0 0 1 2 1 0 C
* * * 120 * * * | 0 0 2 0 0 0 0 0 0 1 2 0 0 0 0 0 | 0 2 1 0 2 0 0 1 2 0 0 0 0 0 0 | 1 0 1 2 1 0 0 D
* * * * 120 * * | 0 0 0 0 0 0 0 2 0 1 0 2 0 0 0 0 | 0 2 0 0 0 0 0 0 2 0 1 2 1 0 0 | 1 0 0 2 1 1 0 E
* * * * * 240 * | 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 | 0 0 0 2 1 1 0 1 2 1 0 0 0 0 0 | 0 1 1 2 1 0 0 F
* * * * * * 120 | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 | 0 0 0 0 0 0 1 0 0 0 2 0 0 2 1 | 0 0 0 0 2 1 1 G
----------------------------+-------------------------------------------------------------+--------------------------------------------------------+----------------------
2 0 0 0 0 0 0 | 60 * * * * * * * * * * * * * * * | 1 2 0 2 0 0 0 0 0 0 0 0 0 0 0 | 2 1 0 2 0 0 0 AA
2 0 0 0 0 0 0 | * 60 * * * * * * * * * * * * * * | 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 | 2 0 1 0 0 0 0 AA'
1 0 0 1 0 0 0 | * * 240 * * * * * * * * * * * * * | 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 | 1 0 1 1 0 0 0 AD
1 0 0 0 0 1 0 | * * * 240 * * * * * * * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 AF
0 2 0 0 0 0 0 | * * * * 60 * * * * * * * * * * * | 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 | 0 0 1 0 2 0 0 BB'
0 1 1 0 0 0 0 | * * * * * 120 * * * * * * * * * * | 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 | 0 0 0 1 2 0 0 BC
0 1 0 0 0 1 0 | * * * * * * 240 * * * * * * * * * | 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 | 0 0 1 1 1 0 0 BF
0 0 1 0 1 0 0 | * * * * * * * 240 * * * * * * * * | 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 | 0 0 0 1 1 1 0 CE
0 0 1 0 0 0 1 | * * * * * * * * 120 * * * * * * * | 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 | 0 0 0 0 2 1 0 CG
0 0 0 1 1 0 0 | * * * * * * * * * 120 * * * * * * | 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 | 1 0 0 2 1 0 0 DE
0 0 0 1 0 1 0 | * * * * * * * * * * 240 * * * * * | 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 | 0 0 1 1 1 0 0 DF
0 0 0 0 2 0 0 | * * * * * * * * * * * 120 * * * * | 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 | 1 0 0 1 0 1 0 EE'
0 0 0 0 0 2 0 | * * * * * * * * * * * * 120 * * * | 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 | 0 1 0 2 1 0 0 FF
0 0 0 0 0 2 0 | * * * * * * * * * * * * * 120 * * | 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 | 0 1 1 1 0 0 0 FF'
0 0 0 0 0 0 2 | * * * * * * * * * * * * * * 60 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 | 0 0 0 0 2 0 1 GG
0 0 0 0 0 0 2 | * * * * * * * * * * * * * * * 120 | 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 | 0 0 0 0 1 1 1 GG'
----------------------------+-------------------------------------------------------------+--------------------------------------------------------+----------------------
6 0 0 0 0 0 0 | 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 20 * * * * * * * * * * * * * * | 2 0 0 0 0 0 0 {6}
2 0 0 2 2 0 0 | 1 0 2 0 0 0 0 0 0 2 0 1 0 0 0 0 | * 120 * * * * * * * * * * * * * | 1 0 0 1 0 0 0 {6}
2 0 0 1 0 0 0 | 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 | * * 120 * * * * * * * * * * * * | 1 0 1 0 0 0 0
2 0 0 0 0 4 0 | 1 0 0 2 0 0 0 0 0 0 0 0 2 1 0 0 | * * * 120 * * * * * * * * * * * | 0 1 0 1 0 0 0 {6}
1 0 0 1 0 1 0 | 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 | * * * * 240 * * * * * * * * * * | 0 0 1 1 0 0 0
1 0 0 0 0 2 0 | 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 | * * * * * 120 * * * * * * * * * | 0 1 1 0 0 0 0
0 2 2 0 0 0 2 | 0 0 0 0 1 2 0 0 2 0 0 0 0 0 1 0 | * * * * * * 60 * * * * * * * * | 0 0 0 0 2 0 0 {6}
0 2 0 1 0 2 0 | 0 0 0 0 1 0 2 0 0 0 2 0 0 0 0 0 | * * * * * * * 120 * * * * * * * | 0 0 1 0 1 0 0 {5}
0 1 1 1 1 2 0 | 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 | * * * * * * * * 240 * * * * * * | 0 0 0 1 1 0 0 {6} cycle (BCEDFF)
0 1 0 0 0 2 0 | 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 | * * * * * * * * * 120 * * * * * | 0 0 1 1 0 0 0
0 0 2 0 1 0 2 | 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 1 | * * * * * * * * * * 120 * * * * | 0 0 0 0 1 1 0 {5}
0 0 1 0 2 0 0 | 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 | * * * * * * * * * * * 120 * * * | 0 0 0 1 0 1 0
0 0 0 0 3 0 0 | 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 | * * * * * * * * * * * * 40 * * | 1 0 0 0 0 1 0
0 0 0 0 0 0 6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 | * * * * * * * * * * * * * 40 * | 0 0 0 0 1 0 1 {6}
0 0 0 0 0 0 3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 | * * * * * * * * * * * * * * 40 | 0 0 0 0 0 1 1
----------------------------+-------------------------------------------------------------+--------------------------------------------------------+----------------------
6 0 0 3 3 0 0 | 3 3 6 0 0 0 0 0 0 3 0 3 0 0 0 0 | 1 3 3 0 0 0 0 0 0 0 0 0 1 0 0 | 40 * * * * * * tut (3gonal sym)
4 0 0 0 0 8 0 | 2 0 0 8 0 0 0 0 0 0 0 0 4 4 0 0 | 0 0 0 4 0 4 0 0 0 0 0 0 0 0 0 | * 30 * * * * * tut (2gonal sym)
2 2 0 2 0 4 0 | 0 1 4 4 1 0 4 0 0 0 4 0 0 2 0 0 | 0 0 2 0 4 2 0 2 0 2 0 0 0 0 0 | * * 60 * * * * mibdi
2 1 1 2 2 4 0 | 1 0 2 2 0 1 2 2 0 2 2 1 2 1 0 0 | 0 1 0 1 2 0 0 0 2 1 0 1 0 0 0 | * * * 120 * * * tut (skew)
0 12 12 6 6 12 12 | 0 0 0 0 6 12 12 12 12 6 12 0 6 0 6 6 | 0 0 0 0 0 0 6 6 12 0 6 0 0 2 0 | * * * * 20 * * ti
0 0 3 0 3 0 3 | 0 0 0 0 0 0 0 6 3 0 0 3 0 0 0 3 | 0 0 0 0 0 0 0 0 0 0 3 3 1 0 1 | * * * * * 40 * teddi
0 0 0 0 0 0 12 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 12 | 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 | * * * * * * 10 tut (full sym)
© 2004-2025 | top of page |