Acronym | tidimex (alt.: idimtex) |
Name |
truncated icosidiminished hexacosachoron, icosidiminished truncated hexacosachoron |
Circumradius | sqrt[(23+9 sqrt(5))/2] = 4.643523 |
General of army | (is itself convex) |
Colonel of regiment | (is itself locally convex) |
Face vector | 960, 2280, 1640, 320 |
Confer |
Just as idimex was obtained from ex by an spid-symmetric diminishing, i.e. chopping off ikepy-caps, tidimex is obtained from tex by a spid-symmetric diminishing, i.e. chopping off iktum-caps.
Much more remarkable is that the non-uniform idimex allows for some of the same operations as regulars do: tidimex is nothing but the truncation operation being applied to it. Moreover, it still is CRF.
120 * * * * * * | 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 2 2 2 1 0 0 0 0 0 0 0 0 0 | 2 1 1 2 0 0 0 A * 120 * * * * * | 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 2 2 1 0 0 0 0 0 | 0 0 1 1 2 0 0 B * * 120 * * * * | 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 0 2 0 2 1 0 0 0 | 0 0 0 1 2 1 0 C * * * 120 * * * | 0 0 2 0 0 0 0 0 0 1 2 0 0 0 0 0 | 0 2 1 0 2 0 0 1 2 0 0 0 0 0 0 | 1 0 1 2 1 0 0 D * * * * 120 * * | 0 0 0 0 0 0 0 2 0 1 0 2 0 0 0 0 | 0 2 0 0 0 0 0 0 2 0 1 2 1 0 0 | 1 0 0 2 1 1 0 E * * * * * 240 * | 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 | 0 0 0 2 1 1 0 1 2 1 0 0 0 0 0 | 0 1 1 2 1 0 0 F * * * * * * 120 | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 | 0 0 0 0 0 0 1 0 0 0 2 0 0 2 1 | 0 0 0 0 2 1 1 G ----------------------------+-------------------------------------------------------------+--------------------------------------------------------+---------------------- 2 0 0 0 0 0 0 | 60 * * * * * * * * * * * * * * * | 1 2 0 2 0 0 0 0 0 0 0 0 0 0 0 | 2 1 0 2 0 0 0 AA 2 0 0 0 0 0 0 | * 60 * * * * * * * * * * * * * * | 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 | 2 0 1 0 0 0 0 AA' 1 0 0 1 0 0 0 | * * 240 * * * * * * * * * * * * * | 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 | 1 0 1 1 0 0 0 AD 1 0 0 0 0 1 0 | * * * 240 * * * * * * * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 AF 0 2 0 0 0 0 0 | * * * * 60 * * * * * * * * * * * | 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 | 0 0 1 0 2 0 0 BB' 0 1 1 0 0 0 0 | * * * * * 120 * * * * * * * * * * | 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 | 0 0 0 1 2 0 0 BC 0 1 0 0 0 1 0 | * * * * * * 240 * * * * * * * * * | 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 | 0 0 1 1 1 0 0 BF 0 0 1 0 1 0 0 | * * * * * * * 240 * * * * * * * * | 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 | 0 0 0 1 1 1 0 CE 0 0 1 0 0 0 1 | * * * * * * * * 120 * * * * * * * | 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 | 0 0 0 0 2 1 0 CG 0 0 0 1 1 0 0 | * * * * * * * * * 120 * * * * * * | 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 | 1 0 0 2 1 0 0 DE 0 0 0 1 0 1 0 | * * * * * * * * * * 240 * * * * * | 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 | 0 0 1 1 1 0 0 DF 0 0 0 0 2 0 0 | * * * * * * * * * * * 120 * * * * | 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 | 1 0 0 1 0 1 0 EE' 0 0 0 0 0 2 0 | * * * * * * * * * * * * 120 * * * | 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 | 0 1 0 2 1 0 0 FF 0 0 0 0 0 2 0 | * * * * * * * * * * * * * 120 * * | 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 | 0 1 1 1 0 0 0 FF' 0 0 0 0 0 0 2 | * * * * * * * * * * * * * * 60 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 | 0 0 0 0 2 0 1 GG 0 0 0 0 0 0 2 | * * * * * * * * * * * * * * * 120 | 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 | 0 0 0 0 1 1 1 GG' ----------------------------+-------------------------------------------------------------+--------------------------------------------------------+---------------------- 6 0 0 0 0 0 0 | 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 20 * * * * * * * * * * * * * * | 2 0 0 0 0 0 0 {6} 2 0 0 2 2 0 0 | 1 0 2 0 0 0 0 0 0 2 0 1 0 0 0 0 | * 120 * * * * * * * * * * * * * | 1 0 0 1 0 0 0 {6} 2 0 0 1 0 0 0 | 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 | * * 120 * * * * * * * * * * * * | 1 0 1 0 0 0 0 2 0 0 0 0 4 0 | 1 0 0 2 0 0 0 0 0 0 0 0 2 1 0 0 | * * * 120 * * * * * * * * * * * | 0 1 0 1 0 0 0 {6} 1 0 0 1 0 1 0 | 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 | * * * * 240 * * * * * * * * * * | 0 0 1 1 0 0 0 1 0 0 0 0 2 0 | 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 | * * * * * 120 * * * * * * * * * | 0 1 1 0 0 0 0 0 2 2 0 0 0 2 | 0 0 0 0 1 2 0 0 2 0 0 0 0 0 1 0 | * * * * * * 60 * * * * * * * * | 0 0 0 0 2 0 0 {6} 0 2 0 1 0 2 0 | 0 0 0 0 1 0 2 0 0 0 2 0 0 0 0 0 | * * * * * * * 120 * * * * * * * | 0 0 1 0 1 0 0 {5} 0 1 1 1 1 2 0 | 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 | * * * * * * * * 240 * * * * * * | 0 0 0 1 1 0 0 {6} cycle (BCEDFF) 0 1 0 0 0 2 0 | 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 | * * * * * * * * * 120 * * * * * | 0 0 1 1 0 0 0 0 0 2 0 1 0 2 | 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 1 | * * * * * * * * * * 120 * * * * | 0 0 0 0 1 1 0 {5} 0 0 1 0 2 0 0 | 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 | * * * * * * * * * * * 120 * * * | 0 0 0 1 0 1 0 0 0 0 0 3 0 0 | 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 | * * * * * * * * * * * * 40 * * | 1 0 0 0 0 1 0 0 0 0 0 0 0 6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 | * * * * * * * * * * * * * 40 * | 0 0 0 0 1 0 1 {6} 0 0 0 0 0 0 3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 | * * * * * * * * * * * * * * 40 | 0 0 0 0 0 1 1 ----------------------------+-------------------------------------------------------------+--------------------------------------------------------+---------------------- 6 0 0 3 3 0 0 | 3 3 6 0 0 0 0 0 0 3 0 3 0 0 0 0 | 1 3 3 0 0 0 0 0 0 0 0 0 1 0 0 | 40 * * * * * * tut (3gonal sym) 4 0 0 0 0 8 0 | 2 0 0 8 0 0 0 0 0 0 0 0 4 4 0 0 | 0 0 0 4 0 4 0 0 0 0 0 0 0 0 0 | * 30 * * * * * tut (2gonal sym) 2 2 0 2 0 4 0 | 0 1 4 4 1 0 4 0 0 0 4 0 0 2 0 0 | 0 0 2 0 4 2 0 2 0 2 0 0 0 0 0 | * * 60 * * * * mibdi 2 1 1 2 2 4 0 | 1 0 2 2 0 1 2 2 0 2 2 1 2 1 0 0 | 0 1 0 1 2 0 0 0 2 1 0 1 0 0 0 | * * * 120 * * * tut (skew) 0 12 12 6 6 12 12 | 0 0 0 0 6 12 12 12 12 6 12 0 6 0 6 6 | 0 0 0 0 0 0 6 6 12 0 6 0 0 2 0 | * * * * 20 * * ti 0 0 3 0 3 0 3 | 0 0 0 0 0 0 0 6 3 0 0 3 0 0 0 3 | 0 0 0 0 0 0 0 0 0 0 3 3 1 0 1 | * * * * * 40 * teddi 0 0 0 0 0 0 12 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 12 | 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 | * * * * * * 10 tut (full sym)
© 2004-2025 | top of page |