Acronym | repenp (alt.: ampenp) |
Name | rectified/ambified penp |
Circumradius | sqrt(8/5) = 1.264911 |
Face vector | 25, 100, 130, 70, 17 |
Confer |
|
Rectification wrt. a non-regular polytope is meant to be the singular instance of truncations on all vertices at such a depth that the hyperplane intersections on the former edges will coincide (provided such a choice exists). Within the specific case of penp as a pre-image these intersection points might differ on its 2 edge types. Therefore penp cannot be rectified (within this stronger sense). Nonetheless the Conway operator of ambification (chosing the former edge centers generally) clearly is applicable. This would result in 2 different edge sizes in the outcome polychoron. That one here is scaled such so that the smaller one becomes unity. Then the longer edge will have size q = sqrt(2).
The non-polar triangles {(t,T,T)} have vertex angles t = arccos(3/4) = 41.409622° resp. T = arccos[1/sqrt(8)] = 69.295189°.
All u = 2 edges, used in the below descriptions, only qualify as pseudo edges wrt. the full polychoron.
Incidence matrix according to Dynkin symbol
uo3ox3oo3oo ou&#zq → height = 0 o.3o.3o.3o. o. | 5 * | 8 0 | 4 12 0 0 | 6 8 0 0 | 4 2 0 .o3.o3.o3.o .o | * 20 | 2 6 | 1 6 3 6 | 3 6 3 2 | 3 2 1 -------------------+------+-------+-------------+-------------+------- oo3oo3oo3oo oo&#q | 1 1 | 40 * | 1 3 0 0 | 3 3 0 0 | 3 1 0 .. .x .. .. .. | 0 2 | * 60 | 0 1 1 2 | 1 2 2 1 | 2 1 1 -------------------+------+-------+-------------+-------------+------- uo .. .. .. ou&#zq | 2 2 | 4 0 | 10 * * * | 3 0 0 0 | 3 0 0 q-{4} .. ox .. .. ..&#q | 1 2 | 2 1 | * 60 * * | 1 2 0 0 | 2 1 0 {(t,T,T)} .o3.x .. .. .. | 0 3 | 0 3 | * * 20 * | 1 0 2 0 | 2 0 1 .. .x3.o .. .. | 0 3 | 0 3 | * * * 40 | 0 1 1 1 | 1 1 1 -------------------+------+-------+-------------+-------------+------- uo3ox .. .. ou&#zq ♦ 3 6 | 12 6 | 3 6 2 0 | 10 * * * | 2 0 0 .. ox3oo .. ..&#q ♦ 1 3 | 3 3 | 0 3 0 1 | * 40 * * | 1 1 0 .o3.x3.o .. .. ♦ 0 6 | 0 12 | 0 0 4 4 | * * 10 * | 1 0 1 .. .x3.o3.o .. ♦ 0 4 | 0 6 | 0 0 0 4 | * * * 10 | 0 1 1 -------------------+------+-------+-------------+-------------+------- uo3ox3oo .. ou&#zq ♦ 4 12 | 24 24 | 6 24 8 8 | 4 8 2 0 | 5 * * .. ox3oo3oo ..&#q ♦ 1 4 | 4 6 | 0 6 0 4 | 0 4 0 1 | * 10 * .o3.x3.o3.o .. ♦ 0 10 | 0 30 | 0 0 10 20 | 0 0 5 5 | * * 2
ouo3xox3ooo3ooo&#qt → both heights = 1 o..3o..3o..3o.. | 10 * * | 6 2 0 0 | 3 6 1 6 0 0 0 | 3 2 3 6 0 0 0 | 1 3 2 0 0 .o.3.o.3.o.3.o. | * 5 * | 0 4 4 0 | 0 0 4 6 6 0 0 | 0 0 6 4 4 0 0 | 0 4 1 1 0 ..o3..o3..o3..o | * * 10 | 0 0 2 6 | 0 0 1 0 6 3 6 | 0 0 3 0 6 3 2 | 0 3 0 2 1 --------------------+---------+-------------+----------------------+------------------+---------- ... x.. ... ... | 2 0 0 | 30 * * * | 1 2 0 1 0 0 0 | 2 1 1 2 0 0 0 | 1 2 1 0 0 oo.3oo.3oo.3oo.&#q | 1 1 0 | * 20 * * | 0 0 1 3 0 0 0 | 0 0 3 3 0 0 0 | 0 3 1 0 0 .oo3.oo3.oo3.oo&#q | 0 1 1 | * * 20 * | 0 0 1 0 3 0 0 | 0 0 3 0 3 0 0 | 0 3 0 1 0 ... ..x ... ... | 0 0 2 | * * * 30 | 0 0 0 0 1 1 2 | 0 0 1 0 2 2 1 | 0 2 0 1 1 --------------------+---------+-------------+----------------------+------------------+---------- o..3x.. ... ... | 3 0 0 | 3 0 0 0 | 10 * * * * * * | 2 0 1 0 0 0 0 | 1 2 0 0 0 ... x..3o.. ... | 3 0 0 | 3 0 0 0 | * 20 * * * * * | 1 1 0 1 0 0 0 | 1 1 1 0 0 ouo ... ... ...&#qt | 1 2 1 | 0 2 2 0 | * * 10 * * * * | 0 0 3 0 0 0 0 | 0 3 0 0 0 q-{4} ... xo. ... ...&#q | 2 1 0 | 1 2 0 0 | * * * 30 * * * | 0 0 1 2 0 0 0 | 0 2 1 0 0 {(t,T,T)} ... .ox ... ...&#q | 0 1 2 | 0 0 2 1 | * * * * 30 * * | 0 0 1 0 2 0 0 | 0 2 0 1 0 {(t,T,T)} ..o3..x ... ... | 0 0 3 | 0 0 0 3 | * * * * * 10 * | 0 0 1 0 0 2 0 | 0 2 0 0 1 ... ..x3..o ... | 0 0 3 | 0 0 0 3 | * * * * * * 20 | 0 0 0 0 1 1 1 | 0 1 0 1 1 --------------------+---------+-------------+----------------------+------------------+---------- o..3x..3o.. ... ♦ 6 0 0 | 12 0 0 0 | 4 4 0 0 0 0 0 | 5 * * * * * * | 1 1 0 0 0 ... x..3o..3o.. ♦ 4 0 0 | 6 0 0 0 | 0 4 0 0 0 0 0 | * 5 * * * * * | 1 0 1 0 0 ouo3xox ... ...&#qt ♦ 3 3 3 | 3 6 6 3 | 1 0 3 3 3 1 0 | * * 10 * * * * | 0 2 0 0 0 ... xo.3oo. ...&#q ♦ 3 1 0 | 3 3 0 0 | 0 1 0 3 0 0 0 | * * * 20 * * * | 0 1 1 0 0 ... .ox3.oo ...&#q ♦ 0 1 3 | 0 0 3 3 | 0 0 0 0 3 0 1 | * * * * 20 * * | 0 1 0 1 0 ..o3..x3..o ... ♦ 0 0 6 | 0 0 0 12 | 0 0 0 0 0 4 4 | * * * * * 5 * | 0 1 0 0 1 ... ..x3..o3..o ♦ 0 0 4 | 0 0 0 6 | 0 0 0 0 0 0 4 | * * * * * * 5 | 0 0 0 1 1 --------------------+---------+-------------+----------------------+------------------+---------- o..3x..3o..3o.. ♦ 10 0 0 | 30 0 0 0 | 10 20 0 0 0 0 0 | 5 5 0 0 0 0 0 | 1 * * * * ouo3xox3ooo ...&#qt ♦ 6 4 6 | 12 12 12 12 | 4 4 6 12 12 4 4 | 1 0 4 4 4 1 0 | * 5 * * * ... xo.3oo.3oo.&#q ♦ 4 1 0 | 6 4 0 0 | 0 4 0 6 0 0 0 | 0 1 0 4 0 0 0 | * * 5 * * ... .ox3.oo3.oo&#q ♦ 0 1 4 | 0 0 4 6 | 0 0 0 0 6 0 4 | 0 0 0 0 4 0 1 | * * * 5 * ..o3..x3..o3..o ♦ 0 0 10 | 0 0 0 30 | 0 0 0 0 0 10 20 | 0 0 0 0 0 5 5 | * * * * 1
© 2004-2025 | top of page |