Acronym | retepe (alt.: amtepe) |
Name | rectified/ambified tepe |
© | |
Circumradius | sqrt(3/2) = 1.224745 |
Face vector | 16, 48, 46, 14 |
Confer |
|
External links |
Rectification wrt. a non-regular polytope is meant to be the singular instance of truncations on all vertices at such a depth that the hyperplane intersections on the former edges will coincide (provided such a choice exists). Within the specific case of tepe as a pre-image these intersection points might differ on its 2 edge types. Therefore tepe cannot be rectified (within this stronger sense). Nonetheless the Conway operator of ambification (chosing the former edge centers generally) clearly is applicable. This would result in 2 different edge sizes in the outcome polychoron. That one here is scaled such so that the smaller one becomes unity. Then the longer edge will have size q = sqrt(2).
The non-polar triangles {(t,T,T)} have vertex angles t = arccos(3/4) = 41.409622° resp. T = arccos[1/sqrt(8)] = 69.295189°.
All u = 2 edges, used in the below descriptions, only qualify as pseudo edges wrt. the full polychoron.
Incidence matrix according to Dynkin symbol
uo3ox3oo ou&#zq → height = 0 o.3o.3o. o. | 4 * | 6 0 | 3 6 0 0 | 3 2 0 .o3.o3.o .o | * 12 | 2 4 | 1 4 2 2 | 2 2 1 ----------------+------+-------+----------+------ oo3oo3oo oo&#q | 1 1 | 24 * | 1 2 0 0 | 2 1 0 q .. .x .. .. | 0 2 | * 24 | 0 1 1 1 | 1 1 1 x ----------------+------+-------+----------+------ uo .. .. ou&#zq | 2 2 | 4 0 | 6 * * * | 2 0 0 q-{4} .. ox .. ..&#q | 1 2 | 2 1 | * 24 * * | 1 1 0 {(t,T,T)} .o3.x .. .. | 0 3 | 0 3 | * * 8 * | 1 0 1 .. .x3.o .. | 0 3 | 0 3 | * * * 8 | 0 1 1 ----------------+------+-------+----------+------ uo3ox .. ou&#zq ♦ 3 6 | 12 6 | 3 6 2 0 | 4 * * .. ox3oo ..&#q ♦ 1 3 | 3 3 | 0 3 0 1 | * 8 * .o3.x3.o .. ♦ 0 6 | 0 12 | 0 0 4 4 | * * 2
ouo3xox3ooo&#qt → both heights = 1 o..3o..3o.. | 6 * * | 4 2 0 0 | 2 2 1 4 0 0 0 | 1 2 2 0 0 .o.3.o.3.o. | * 4 * | 0 3 3 0 | 0 0 3 3 3 0 0 | 0 3 1 1 0 ..o3..o3..o | * * 6 | 0 0 2 4 | 0 0 1 0 4 2 2 | 0 2 0 2 1 ----------------+-------+-------------+-----------------+---------- ... x.. ... | 2 0 0 | 12 * * * | 1 1 0 1 0 0 0 | 1 1 1 0 0 oo.3oo.3oo.&#q | 1 1 0 | * 12 * * | 0 0 1 2 0 0 0 | 0 2 1 0 0 .oo3.oo3.oo&#q | 0 1 1 | * * 12 * | 0 0 1 0 2 0 0 | 0 2 0 1 0 ... ..x ... | 0 0 2 | * * * 12 | 0 0 0 0 1 1 1 | 0 1 0 1 1 ----------------+-------+-------------+-----------------+---------- o..3x.. ... | 3 0 0 | 3 0 0 0 | 4 * * * * * * | 1 1 0 0 0 ... x..3o.. | 3 0 0 | 3 0 0 0 | * 4 * * * * * | 1 0 1 0 0 ouo ... ...&#qt | 1 2 1 | 0 2 2 0 | * * 6 * * * * | 0 2 0 0 0 ... xo. ...&#q | 2 1 0 | 1 2 0 0 | * * * 12 * * * | 0 1 1 0 0 ... .ox ...&#q | 0 1 2 | 0 0 2 1 | * * * * 12 * * | 0 1 0 1 0 ..o3..x ... | 0 0 3 | 0 0 0 3 | * * * * * 4 * | 0 1 0 0 1 ... ..x3..o | 0 0 3 | 0 0 0 3 | * * * * * * 4 | 0 0 0 1 1 ----------------+-------+-------------+-----------------+---------- o..3x..3o.. ♦ 6 0 0 | 12 0 0 0 | 4 4 0 0 0 0 0 | 1 * * * * ouo3xox ...&#qt ♦ 3 3 3 | 3 6 6 3 | 1 0 3 3 3 1 0 | * 4 * * * ... xo.3oo.&#q ♦ 3 1 0 | 3 3 0 0 | 0 1 0 3 0 0 0 | * * 4 * * ... .ox3.oo&#q ♦ 0 1 3 | 0 0 3 3 | 0 0 0 0 3 0 1 | * * * 4 * ..o3..x3..o ♦ 0 0 6 | 0 0 0 12 | 0 0 0 0 0 4 4 | * * * * 1
© 2004-2024 | top of page |