Acronym | gaddiddip |
Name | great-dodekicosidodecahedron prism |
Circumradius | sqrt[3-sqrt(5)] = 0.874032 |
Colonel of regiment | (is itself locally convex – other uniform polyhedral members: girddip qriddip) |
Dihedral angles | |
Face vector | 120, 300, 208, 46 |
Confer |
|
External links |
As abstract polytope gaddiddip is isomorphic to saddiddip, thereby replacing pentagrams and decagrams respectively by retrograde pentagons and decagons, resp. replacing gaddid by saddid, stip by pip, and stiddip by dip. – It also is isomorphic to sidditdiddip, thereby replacing decagrams by decagons, resp. replacing gaddid by sidditdid and stiddip by dip. – Finally it is isomorphic to gidditdiddip, thereby replacing pentagrams by pentagons, resp. replacing gaddid by gidditdid and stip by pip.
Incidence matrix according to Dynkin symbol
x x3o5/2x5/3*b . . . . | 120 | 1 2 2 | 2 2 1 2 1 | 1 2 1 1 ---------------+-----+------------+----------------+----------- x . . . | 2 | 60 * * | 2 2 0 0 0 | 1 2 1 0 . x . . | 2 | * 120 * | 1 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 120 | 0 1 0 1 1 | 0 1 1 1 ---------------+-----+------------+----------------+----------- x x . . | 4 | 2 2 0 | 60 * * * * | 1 1 0 0 x . . x | 4 | 2 0 2 | * 60 * * * | 0 1 1 0 . x3o . | 3 | 0 3 0 | * * 40 * * | 1 0 0 1 . x . x5/3*b | 10 | 0 5 5 | * * * 24 * | 0 1 0 1 . . o5/2x | 5 | 0 0 5 | * * * * 24 | 0 0 1 1 ---------------+-----+------------+----------------+----------- x x3o . ♦ 6 | 3 6 0 | 3 0 2 0 0 | 20 * * * x x . x5/3*b ♦ 20 | 10 10 10 | 5 5 0 2 0 | * 12 * * x . o5/2x ♦ 10 | 5 0 10 | 0 5 0 0 2 | * * 12 * . x3o5/2x5/3*b ♦ 60 | 0 60 60 | 0 0 20 12 12 | * * * 2
x x3/2o5/3x5/3*b . . . . | 120 | 1 2 2 | 2 2 1 2 1 | 1 2 1 1 -----------------+-----+------------+----------------+----------- x . . . | 2 | 60 * * | 2 2 0 0 0 | 1 2 1 0 . x . . | 2 | * 120 * | 1 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 120 | 0 1 0 1 1 | 0 1 1 1 -----------------+-----+------------+----------------+----------- x x . . | 4 | 2 2 0 | 60 * * * * | 1 1 0 0 x . . x | 4 | 2 0 2 | * 60 * * * | 0 1 1 0 . x3/2o . | 3 | 0 3 0 | * * 40 * * | 1 0 0 1 . x . x5/3*b | 10 | 0 5 5 | * * * 24 * | 0 1 0 1 . . o5/3x | 5 | 0 0 5 | * * * * 24 | 0 0 1 1 -----------------+-----+------------+----------------+----------- x x3/2o . ♦ 6 | 3 6 0 | 3 0 2 0 0 | 20 * * * x x . x5/3*b ♦ 20 | 10 10 10 | 5 5 0 2 0 | * 12 * * x . o5/3x ♦ 10 | 5 0 10 | 0 5 0 0 2 | * * 12 * . x3/2o5/3x5/3*b ♦ 60 | 0 60 60 | 0 0 20 12 12 | * * * 2
© 2004-2025 | top of page |