Acronym ptaika cube Name ike-augmented cubaike Dihedral angles at {3} between tet and tet (in pyramid):   arccos[-(1+3 sqrt(5))/8] = 164.477512° at {3} between squippy and tet (in cubaike):   arccos[-(3 sqrt(5)-1)/8] = 135.522488° at {3} between tet and tet (across rim):   120° at {4} between cube and trip:   arccos(-sqrt[(3-sqrt(5))/6]) = 110.905157° at {3} between squippy and tet (across rim):   arccos(-1/4) = 104.477512° at {3} between squippy and trip:   ... at {4} between squippy and trip:   ... Confer related segmentochora: cubaike   ikepy   related CRFs: pta cubaike   baucubaike   general polytopal classes: bistratic lace towers

Incidence matrix

```point || pseudo ike || cube → height(1,2) = (sqrt(5)-1)/4 = 0.309017
height(2,3) = (1+sqrt(5))/4 = 0.809017

1  * * | 12 0  0  0  0 | 6 24  0 0  0  0  0 0 | 12 8  0 0 0 0  verf: ike
* 12 * |  1 1  4  2  0 | 1  4  3 2  2  4  1 0 |  3 2  3 2 1 0
*  * 8 |  0 0  0  3  3 | 0  0  0 0  3  3  3 3 |  0 0  3 1 3 1
-------+---------------+----------------------+--------------
1  1 0 | 12 *  *  *  * | 1  4  0 0  0  0  0 0 |  3 2  0 0 0 0
0  2 0 |  * 6  *  *  * | 1  0  2 0  2  0  0 0 |  2 0  2 0 1 0
0  2 0 |  * * 24  *  * | 0  1  1 1  0  1  0 0 |  1 1  1 1 0 0
0  1 1 |  * *  * 24  * | 0  0  0 0  1  2  1 0 |  0 0  2 1 1 0
0  0 2 |  * *  *  * 12 | 0  0  0 0  1  0  1 2 |  0 0  1 0 2 1
-------+---------------+----------------------+--------------
1  2 0 |  2 1  0  0  0 | 6  *  * *  *  *  * * |  2 0  0 0 0 0
1  2 0 |  2 0  1  0  0 | * 24  * *  *  *  * * |  1 1  0 0 0 0
0  3 0 |  0 1  2  0  0 | *  * 12 *  *  *  * * |  1 0  1 0 0 0
0  3 0 |  0 0  3  0  0 | *  *  * 8  *  *  * * |  0 1  0 1 0 0
0  2 2 |  0 1  0  2  1 | *  *  * * 12  *  * * |  0 0  1 0 1 0
0  2 1 |  0 0  1  2  0 | *  *  * *  * 24  * * |  0 0  1 1 0 0
0  1 2 |  0 0  0  2  1 | *  *  * *  *  * 12 * |  0 0  1 0 1 0
0  0 4 |  0 0  0  0  4 | *  *  * *  *  *  * 6 |  0 0  0 0 1 1
-------+---------------+----------------------+--------------
1  3 0 |  3 1  2  0  0 | 1  2  1 0  0  0  0 0 | 12 *  * * * *  tet
1  3 0 |  3 0  3  0  0 | 0  3  0 1  0  0  0 0 |  * 8  * * * *  tet
0  3 2 |  0 1  2  4  1 | 0  0  1 0  1  2  1 0 |  * * 12 * * *  squippy
0  3 1 |  0 0  3  3  0 | 0  0  0 1  0  3  0 0 |  * *  * 8 * *  tet
0  2 4 |  0 1  0  4  4 | 0  0  0 0  2  0  2 1 |  * *  * * 6 *  trip
0  0 8 |  0 0  0  0 12 | 0  0  0 0  0  0  0 6 |  * *  * * * 1  cube
```