Acronym | ..., prit || grit |
Name | (degenerate) prit atop grit |
Circumradius | ∞ i.e. flat in euclidean space |
Face vector | 384, 1248, 1384, 600, 82 |
Confer |
|
It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.
Incidence matrix according to Dynkin symbol
xo3xx3ox4xx&#x → height = 0
(prit || grit)
o.3o.3o.4o. | 192 * | 1 2 2 2 0 0 0 | 2 2 1 2 1 2 2 1 2 0 0 0 0 | 1 2 1 1 2 1 2 1 2 1 0 0 0 | 1 1 2 1 1 0
.o3.o3.o4.o | * 192 | 0 0 0 2 2 1 1 | 0 0 0 0 0 1 2 2 2 1 2 2 1 | 0 0 0 0 1 1 1 2 2 2 1 1 2 | 0 1 1 1 2 1
---------------+---------+--------------------------+--------------------------------------------+--------------------------------------+---------------
x. .. .. .. | 2 0 | 96 * * * * * * | 2 2 0 0 0 1 0 0 0 0 0 0 0 | 1 2 1 0 2 1 2 0 0 0 0 0 0 | 1 1 2 1 0 0
.. x. .. .. | 2 0 | * 192 * * * * * | 1 0 1 1 0 0 1 0 0 0 0 0 0 | 1 1 0 1 1 0 0 1 1 0 0 0 0 | 1 1 1 0 1 0
.. .. .. x. | 2 0 | * * 192 * * * * | 0 1 0 1 1 0 0 0 1 0 0 0 0 | 0 1 1 1 0 0 1 0 1 1 0 0 0 | 1 0 1 1 1 0
oo3oo3oo4oo&#x | 1 1 | * * * 384 * * * | 0 0 0 0 0 1 1 1 1 0 0 0 0 | 0 0 0 0 1 1 1 1 1 1 0 0 0 | 0 1 1 1 1 0
.. .x .. .. | 0 2 | * * * * 192 * * | 0 0 0 0 0 0 1 0 0 1 1 1 0 | 0 0 0 0 1 0 0 1 1 0 1 1 1 | 0 1 1 0 1 1
.. .. .x .. | 0 2 | * * * * * 96 * | 0 0 0 0 0 0 0 2 0 0 2 0 1 | 0 0 0 0 0 1 0 2 0 2 1 0 2 | 0 1 0 1 2 1
.. .. .. .x | 0 2 | * * * * * * 96 | 0 0 0 0 0 0 0 0 1 0 0 2 1 | 0 0 0 0 0 0 1 0 2 2 0 1 2 | 0 0 1 1 2 1
---------------+---------+--------------------------+--------------------------------------------+--------------------------------------+---------------
x.3x. .. .. | 6 0 | 3 3 0 0 0 0 0 | 64 * * * * * * * * * * * * | 1 1 0 0 1 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0
x. .. .. x. | 4 0 | 2 0 2 0 0 0 0 | * 96 * * * * * * * * * * * | 0 1 1 0 0 0 1 0 0 0 0 0 0 | 1 0 1 1 0 0
.. x.3o. .. | 3 0 | 0 3 0 0 0 0 0 | * * 64 * * * * * * * * * * | 1 0 0 1 0 0 0 1 0 0 0 0 0 | 1 1 0 0 1 0
.. x. .. x. | 4 0 | 0 2 2 0 0 0 0 | * * * 96 * * * * * * * * * | 0 1 0 1 0 0 0 0 1 0 0 0 0 | 1 0 1 0 1 0
.. .. o.4x. | 4 0 | 0 0 4 0 0 0 0 | * * * * 48 * * * * * * * * | 0 0 1 1 0 0 0 0 0 1 0 0 0 | 1 0 0 1 1 0
xo .. .. ..&#x | 2 1 | 1 0 0 2 0 0 0 | * * * * * 192 * * * * * * * | 0 0 0 0 1 1 1 0 0 0 0 0 0 | 0 1 1 1 0 0
.. xx .. ..&#x | 2 2 | 0 1 0 2 1 0 0 | * * * * * * 192 * * * * * * | 0 0 0 0 1 0 0 1 1 0 0 0 0 | 0 1 1 0 1 0
.. .. ox ..&#x | 1 2 | 0 0 0 2 0 1 0 | * * * * * * * 192 * * * * * | 0 0 0 0 0 1 0 1 0 1 0 0 0 | 0 1 0 1 1 0
.. .. .. xx&#x | 2 2 | 0 0 1 2 0 0 1 | * * * * * * * * 192 * * * * | 0 0 0 0 0 0 1 0 1 1 0 0 0 | 0 0 1 1 1 0
.o3.x .. .. | 0 3 | 0 0 0 0 3 0 0 | * * * * * * * * * 64 * * * | 0 0 0 0 1 0 0 0 0 0 1 1 0 | 0 1 1 0 0 1
.. .x3.x .. | 0 6 | 0 0 0 0 3 3 0 | * * * * * * * * * * 64 * * | 0 0 0 0 0 0 0 1 0 0 1 0 1 | 0 1 0 0 1 1
.. .x .. .x | 0 4 | 0 0 0 0 2 0 2 | * * * * * * * * * * * 96 * | 0 0 0 0 0 0 0 0 1 0 0 1 1 | 0 0 1 0 1 1
.. .. .x4.x | 0 8 | 0 0 0 0 0 4 4 | * * * * * * * * * * * * 24 | 0 0 0 0 0 0 0 0 0 2 0 0 2 | 0 0 0 1 2 1
---------------+---------+--------------------------+--------------------------------------------+--------------------------------------+---------------
x.3x.3o. .. ♦ 12 0 | 6 12 0 0 0 0 0 | 4 0 4 0 0 0 0 0 0 0 0 0 0 | 16 * * * * * * * * * * * * | 1 1 0 0 0 0
x.3x. .. x. ♦ 12 0 | 6 6 6 0 0 0 0 | 2 3 0 3 0 0 0 0 0 0 0 0 0 | * 32 * * * * * * * * * * * | 1 0 1 0 0 0
x. .. o.4x. ♦ 8 0 | 4 0 8 0 0 0 0 | 0 4 0 0 2 0 0 0 0 0 0 0 0 | * * 24 * * * * * * * * * * | 1 0 0 1 0 0
.. x.3o.4x. ♦ 24 0 | 0 24 24 0 0 0 0 | 0 0 8 12 6 0 0 0 0 0 0 0 0 | * * * 8 * * * * * * * * * | 1 0 0 0 1 0
xo3xx .. ..&#x ♦ 6 3 | 3 3 0 6 3 0 0 | 1 0 0 0 0 3 3 0 0 1 0 0 0 | * * * * 64 * * * * * * * * | 0 1 1 0 0 0
xo .. ox ..&#x ♦ 2 2 | 1 0 0 4 0 1 0 | 0 0 0 0 0 2 0 2 0 0 0 0 0 | * * * * * 96 * * * * * * * | 0 1 0 1 0 0
xo .. .. xx&#x ♦ 4 2 | 2 0 2 4 0 0 1 | 0 1 0 0 0 2 0 0 2 0 0 0 0 | * * * * * * 96 * * * * * * | 0 0 1 1 0 0
.. xx3ox ..&#x ♦ 3 6 | 0 3 0 6 3 3 0 | 0 0 1 0 0 0 3 3 0 0 1 0 0 | * * * * * * * 64 * * * * * | 0 1 0 0 1 0
.. xx .. xx&#x ♦ 4 4 | 0 2 2 4 2 0 2 | 0 0 0 1 0 0 2 0 2 0 0 1 0 | * * * * * * * * 96 * * * * | 0 0 1 0 1 0
.. .. ox4xx&#x ♦ 4 8 | 0 0 4 8 0 4 4 | 0 0 0 0 1 0 0 4 4 0 0 0 1 | * * * * * * * * * 48 * * * | 0 0 0 1 1 0
.o3.x3.x .. ♦ 0 12 | 0 0 0 0 12 6 0 | 0 0 0 0 0 0 0 0 0 4 4 0 0 | * * * * * * * * * * 16 * * | 0 1 0 0 0 1
.o3.x .. .x ♦ 0 6 | 0 0 0 0 6 0 3 | 0 0 0 0 0 0 0 0 0 2 0 3 0 | * * * * * * * * * * * 32 * | 0 0 1 0 0 1
.. .x3.x4.x ♦ 0 48 | 0 0 0 0 24 24 24 | 0 0 0 0 0 0 0 0 0 0 8 12 6 | * * * * * * * * * * * * 8 | 0 0 0 0 1 1
---------------+---------+--------------------------+--------------------------------------------+--------------------------------------+---------------
x.3x.3o.4x. ♦ 192 0 | 96 192 192 0 0 0 0 | 64 96 64 96 48 0 0 0 0 0 0 0 0 | 16 32 24 8 0 0 0 0 0 0 0 0 0 | 1 * * * * *
xo3xx3ox ..&#x ♦ 12 12 | 6 12 0 24 12 6 0 | 4 0 4 0 0 12 12 12 0 4 4 0 0 | 1 0 0 0 4 6 0 4 0 0 1 0 0 | * 16 * * * *
xo3xx .. xx&#x ♦ 12 6 | 6 6 6 12 6 0 3 | 2 3 0 3 0 6 6 0 6 2 0 3 0 | 0 1 0 0 2 0 3 0 3 0 0 1 0 | * * 32 * * *
xo .. ox4xx&#x ♦ 8 8 | 4 0 8 16 0 4 4 | 0 4 0 0 2 8 0 8 8 0 0 0 1 | 0 0 1 0 0 4 4 0 0 2 0 0 0 | * * * 24 * *
.. xx3ox4xx&#x ♦ 24 48 | 0 24 24 48 24 24 24 | 0 0 8 12 6 0 24 24 24 0 8 12 6 | 0 0 0 1 0 0 0 8 12 6 0 0 1 | * * * * 8 *
.o3.x3.x4.x ♦ 0 192 | 0 0 0 0 192 96 96 | 0 0 0 0 0 0 0 0 0 64 64 96 24 | 0 0 0 0 0 0 0 0 0 0 16 32 8 | * * * * * 1
© 2004-2025 | top of page |