Acronym | pithax |
Name |
prismatotruncated hemihexeract, runcitruncated demihexeract, stericantic hexeract |
Circumradius | sqrt(35)/2 = 2.958040 |
Coordinates | (5/sqrt(8), 5/sqrt(8), 3/sqrt(8), 3/sqrt(8), 1/sqrt(8), 1/sqrt(8)) & all permutations, all even changes of sign |
Face vector | 2880, 12960, 18240, 10560, 2636, 236 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x3x3o *b3o3x3o o3o3o *b3o3o3o | 2880 | 1 4 4 | 4 4 2 2 8 2 2 | 2 2 8 2 2 1 4 4 4 1 | 1 4 4 4 1 2 2 2 | 2 2 2 1 ---------------+------+----------------+------------------------------------+--------------------------------------------+--------------------------------+------------- x . . . . . | 2 | 1440 * * | 4 4 0 0 0 0 0 | 2 2 8 2 2 0 0 0 0 0 | 1 4 4 4 1 0 0 0 | 2 2 2 0 . x . . . . | 2 | * 5760 * | 1 0 1 1 2 0 0 | 1 1 2 0 0 1 2 2 1 0 | 1 2 2 1 0 2 1 1 | 2 1 1 1 . . . . x . | 2 | * * 5760 | 0 1 0 0 2 1 1 | 0 0 2 1 1 0 1 2 2 1 | 0 1 2 2 1 1 1 2 | 1 1 2 1 ---------------+------+----------------+------------------------------------+--------------------------------------------+--------------------------------+------------- x3x . . . . | 6 | 3 3 0 | 1920 * * * * * * | 1 1 2 0 0 0 0 0 0 0 | 1 2 2 1 0 0 0 0 | 2 1 1 0 x . . . x . | 4 | 2 0 2 | * 2880 * * * * * | 0 0 2 1 1 0 0 0 0 0 | 0 1 2 2 1 0 0 0 | 1 1 2 0 . x3o . . . | 3 | 0 3 0 | * * 1920 * * * * | 1 0 0 0 0 1 2 0 0 0 | 1 2 0 0 0 2 1 0 | 2 1 0 1 . x . *b3o . . | 3 | 0 3 0 | * * * 1920 * * * | 0 1 0 0 0 1 0 2 0 0 | 1 0 2 0 0 2 0 1 | 2 0 1 1 . x . . x . | 4 | 0 2 2 | * * * * 5760 * * | 0 0 1 0 0 0 1 1 1 0 | 0 1 1 1 0 1 1 1 | 1 1 1 1 . . . o3x . | 3 | 0 0 3 | * * * * * 1920 * | 0 0 0 1 0 0 0 2 0 1 | 0 0 2 0 1 1 0 2 | 1 0 2 1 . . . . x3o | 3 | 0 0 3 | * * * * * * 1920 | 0 0 0 0 1 0 0 0 2 1 | 0 0 0 2 1 0 1 2 | 0 1 2 1 ---------------+------+----------------+------------------------------------+--------------------------------------------+--------------------------------+------------- x3x3o . . . ♦ 12 | 6 12 0 | 4 0 4 0 0 0 0 | 480 * * * * * * * * * | 1 2 0 0 0 0 0 0 | 2 1 0 0 x3x . *b3o . . ♦ 12 | 6 12 0 | 4 0 0 4 0 0 0 | * 480 * * * * * * * * | 1 0 2 0 0 0 0 0 | 2 0 1 0 x3x . . x . ♦ 12 | 6 6 6 | 2 3 0 0 3 0 0 | * * 1920 * * * * * * * | 0 1 1 1 0 0 0 0 | 1 1 1 0 x . . o3x . ♦ 6 | 3 0 6 | 0 3 0 0 0 2 0 | * * * 960 * * * * * * | 0 0 2 0 1 0 0 0 | 1 0 2 0 x . . . x3o ♦ 6 | 3 0 6 | 0 3 0 0 0 0 2 | * * * * 960 * * * * * | 0 0 0 2 1 0 0 0 | 0 1 2 0 . x3o *b3o . . ♦ 6 | 0 12 0 | 0 0 4 4 0 0 0 | * * * * * 480 * * * * | 1 0 0 0 0 2 0 0 | 2 0 0 1 . x3o . x . ♦ 6 | 0 6 3 | 0 0 2 0 3 0 0 | * * * * * * 1920 * * * | 0 1 0 0 0 1 1 0 | 1 1 0 1 . x . *b3o3x . ♦ 12 | 0 12 12 | 0 0 0 4 6 4 0 | * * * * * * * 960 * * | 0 0 1 0 0 1 0 1 | 1 0 1 1 . x . . x3o ♦ 6 | 0 3 6 | 0 0 0 0 3 0 2 | * * * * * * * * 1920 * | 0 0 0 1 0 0 1 1 | 0 1 1 1 . . . o3x3o ♦ 6 | 0 0 12 | 0 0 0 0 0 4 4 | * * * * * * * * * 480 | 0 0 0 0 1 0 0 2 | 0 0 2 1 ---------------+------+----------------+------------------------------------+--------------------------------------------+--------------------------------+------------- x3x3o *b3o . . ♦ 48 | 24 96 0 | 32 0 32 32 0 0 0 | 8 8 0 0 0 8 0 0 0 0 | 60 * * * * * * * | 2 0 0 0 x3x3o . x . ♦ 24 | 12 24 12 | 8 6 8 0 12 0 0 | 2 0 4 0 0 0 4 0 0 0 | * 480 * * * * * * | 1 1 0 0 x3x . *b3o3x . ♦ 60 | 30 60 60 | 20 30 0 20 30 20 0 | 0 5 10 10 0 0 0 5 0 0 | * * 192 * * * * * | 1 0 1 0 x3x . . x3o ♦ 18 | 9 9 18 | 3 9 0 0 9 0 6 | 0 0 3 0 3 0 0 0 3 0 | * * * 640 * * * * | 0 1 1 0 x . . o3x3o ♦ 12 | 6 0 24 | 0 12 0 0 0 8 8 | 0 0 0 4 4 0 0 0 0 2 | * * * * 240 * * * | 0 0 2 0 . x3o *b3o3x . ♦ 30 | 0 60 30 | 0 0 20 20 30 10 0 | 0 0 0 0 0 5 10 5 0 0 | * * * * * 192 * * | 1 0 0 1 . x3o . x3o ♦ 9 | 0 9 9 | 0 0 3 0 9 0 3 | 0 0 0 0 0 0 3 0 3 0 | * * * * * * 640 * | 0 1 0 1 . x . *b3o3x3o ♦ 30 | 0 30 60 | 0 0 0 10 30 20 20 | 0 0 0 0 0 0 0 5 10 5 | * * * * * * * 192 | 0 0 1 1 ---------------+------+----------------+------------------------------------+--------------------------------------------+--------------------------------+------------- x3x3o *b3o3x . ♦ 480 | 240 960 480 | 320 240 320 320 480 160 0 | 80 80 160 80 0 80 160 80 0 0 | 10 40 16 0 0 16 0 0 | 12 * * * x3x3o . x3o ♦ 36 | 18 36 36 | 12 18 12 0 36 0 12 | 3 0 12 0 6 0 12 0 12 0 | 0 3 0 4 0 0 4 0 | * 160 * * x3x . *b3o3x3o ♦ 180 | 90 180 360 | 60 180 0 60 180 120 120 | 0 15 60 60 60 0 0 30 60 30 | 0 0 6 20 15 0 0 6 | * * 32 * . x3o *b3o3x3o ♦ 90 | 0 180 180 | 0 0 60 60 180 60 60 | 0 0 0 0 0 15 60 30 60 15 | 0 0 0 0 0 6 20 6 | * * * 32
o3x3o3x3o4s demi( . . . . . . ) | 2880 | 4 4 1 | 2 2 8 2 2 4 4 | 1 4 4 4 1 2 2 2 8 2 | 2 2 2 1 4 1 4 4 | 1 2 2 2 --------------------+------+----------------+------------------------------------+--------------------------------------------+--------------------------------+------------- demi( . x . . . . ) | 2 | 5760 * * | 1 1 2 0 0 1 0 | 1 2 2 1 0 1 1 0 2 0 | 2 1 1 1 1 0 2 2 | 1 1 1 2 demi( . . . x . . ) | 2 | * 5760 * | 0 0 2 1 1 0 1 | 0 1 2 2 1 0 0 1 2 1 | 1 1 2 0 2 1 1 2 | 1 1 2 1 . . . . o4s | 2 | * * 1440 | 0 0 0 0 0 4 4 | 0 0 0 0 0 2 2 2 8 2 | 0 0 0 1 4 1 4 4 | 0 2 2 2 --------------------+------+----------------+------------------------------------+--------------------------------------------+--------------------------------+------------- demi( o3x . . . . ) | 3 | 3 0 0 | 1920 * * * * * * | 1 2 0 0 0 1 0 0 0 0 | 2 1 0 1 0 0 2 0 | 1 1 0 2 demi( . x3o . . . ) | 3 | 3 0 0 | * 1920 * * * * * | 1 0 2 0 0 0 1 0 0 0 | 2 0 1 1 0 0 0 2 | 1 0 1 2 demi( . x . x . . ) | 4 | 2 2 0 | * * 5760 * * * * | 0 1 1 1 0 0 0 0 1 0 | 1 1 1 0 1 0 1 1 | 1 1 1 1 demi( . . o3x . . ) | 3 | 0 3 0 | * * * 1920 * * * | 0 0 2 0 1 0 0 0 0 1 | 1 0 2 0 0 1 0 2 | 1 0 2 1 demi( . . . x3o . ) | 3 | 0 3 0 | * * * * 1920 * * | 0 0 0 2 1 0 0 1 0 0 | 0 1 2 0 2 1 0 0 | 1 1 2 0 . x . 2 o4s | 4 | 2 0 2 | * * * * * 2880 * | 0 0 0 0 0 1 1 0 2 0 | 0 0 0 1 1 0 2 2 | 0 1 1 2 sefa( . . . x3o4s ) | 6 | 0 3 3 | * * * * * * 1920 | 0 0 0 0 0 0 0 1 2 1 | 0 0 0 0 2 1 1 2 | 0 1 2 1 --------------------+------+----------------+------------------------------------+--------------------------------------------+--------------------------------+------------- demi( o3x3o . . . ) ♦ 6 | 12 0 0 | 4 4 0 0 0 0 0 | 480 * * * * * * * * * | 2 0 0 1 0 0 0 0 | 1 0 0 2 demi( o3x . x . . ) ♦ 6 | 6 3 0 | 2 0 3 0 0 0 0 | * 1920 * * * * * * * * | 1 1 0 0 0 0 1 0 | 1 1 0 1 demi( . x3o3x . . ) ♦ 12 | 12 12 0 | 0 4 6 4 0 0 0 | * * 960 * * * * * * * | 1 0 1 0 0 0 0 1 | 1 0 1 1 demi( . x . x3o . ) ♦ 6 | 3 6 0 | 0 0 3 0 2 0 0 | * * * 1920 * * * * * * | 0 1 1 0 1 0 0 0 | 1 1 1 0 demi( . . o3x3o . ) ♦ 6 | 0 12 0 | 0 0 0 4 4 0 0 | * * * * 480 * * * * * | 0 0 2 0 0 1 0 0 | 1 0 2 0 o3x . 2 o4s ♦ 6 | 6 0 3 | 2 0 0 0 0 3 0 | * * * * * 960 * * * * | 0 0 0 1 0 0 2 0 | 0 1 0 2 . x3o 2 o4s ♦ 6 | 6 0 3 | 0 2 0 0 0 3 0 | * * * * * * 960 * * * | 0 0 0 1 0 0 0 2 | 0 0 1 2 . . . x3o4s ♦ 12 | 0 12 6 | 0 0 0 0 4 0 4 | * * * * * * * 480 * * | 0 0 0 0 2 1 0 0 | 0 1 2 0 sefa( . x 2 x3o4s ) ♦ 12 | 6 6 6 | 0 0 3 0 0 3 2 | * * * * * * * * 1920 * | 0 0 0 0 1 0 1 1 | 0 1 1 1 sefa( . . o3x3o4s ) ♦ 12 | 0 12 6 | 0 0 0 4 0 0 4 | * * * * * * * * * 480 | 0 0 0 0 0 1 0 2 | 0 0 2 1 --------------------+------+----------------+------------------------------------+--------------------------------------------+--------------------------------+------------- demi( o3x3o3x . . ) ♦ 30 | 60 30 0 | 20 20 30 10 0 0 0 | 5 10 5 0 0 0 0 0 0 0 | 192 * * * * * * * | 1 0 0 1 demi( o3x . x3o . ) ♦ 9 | 9 9 0 | 3 0 9 0 3 0 0 | 0 3 0 3 0 0 0 0 0 0 | * 640 * * * * * * | 1 1 0 0 demi( . x3o3x3o . ) ♦ 30 | 30 60 0 | 0 10 30 20 20 0 0 | 0 0 5 10 5 0 0 0 0 0 | * * 192 * * * * * | 1 0 1 0 o3x3o 2 o4s ♦ 12 | 24 0 6 | 8 8 0 0 0 12 0 | 2 0 0 0 0 4 4 0 0 0 | * * * 240 * * * * | 0 0 0 2 . x 2 x3o4s ♦ 24 | 12 24 12 | 0 0 12 0 8 6 8 | 0 0 0 4 0 0 0 2 4 0 | * * * * 480 * * * | 0 1 1 0 . . o3x3o4s ♦ 48 | 0 96 24 | 0 0 0 32 32 0 32 | 0 0 0 0 8 0 0 8 0 8 | * * * * * 60 * * | 0 0 2 0 sefa( o3x 2 x3o4s ) ♦ 18 | 18 9 9 | 6 0 9 0 0 9 3 | 0 3 0 0 0 3 0 0 3 0 | * * * * * * 640 * | 0 1 0 1 sefa( . x3o3x3o4s ) ♦ 60 | 60 60 30 | 0 20 30 20 0 30 20 | 0 0 5 0 0 0 10 0 10 5 | * * * * * * * 192 | 0 0 1 1 --------------------+------+----------------+------------------------------------+--------------------------------------------+--------------------------------+------------- demi( o3x3o3x3o . ) ♦ 90 | 180 180 0 | 60 60 180 60 60 0 0 | 15 60 30 60 15 0 0 0 0 0 | 6 20 6 0 0 0 0 0 | 32 * * * o3x 2 x3o4s ♦ 36 | 36 36 18 | 12 0 36 0 12 18 12 | 0 12 0 12 0 6 0 3 12 0 | 0 4 0 0 3 0 4 0 | * 160 * * . x3o3x3o4s ♦ 480 | 480 960 240 | 0 160 480 320 320 240 320 | 0 0 80 160 80 0 80 80 160 80 | 0 0 16 0 40 10 0 16 | * * 12 * sefa( o3x3o3x3o4s ) ♦ 180 | 360 180 90 | 120 120 180 60 0 180 60 | 30 60 30 0 0 60 60 0 60 15 | 6 0 0 15 0 0 20 6 | * * * 32 starting figure: o3x3o3x3o4x
© 2004-2024 | top of page |