Acronym | pextot |
Name | partially expanded truncated triacontaditeron |
Circumradius | ... |
Lace city in approx. ASCII-art |
o3o4o x3o4o o3o4o -- x3o3o4o (hex) o3o4o u3o4o o3o4o -- u3o3o4o (u-hex) x3o4o u3o4o x3x4o u3o4o x3o4o -- x3x3o4o (thex) x3o4o u3o4o x3x4o u3o4o x3o4o -- x3x3o4o (thex) o3o4o u3o4o o3o4o -- u3o3o4o (u-hex) o3o4o x3o4o o3o4o -- x3o3o4o (hex) | | | | +-- wx ox3oo4oo&#zx (pex hex) | | | +--------- Xx ou3oo4oo&#zu (pex hex variant) | | +---------------- Xwx xux3oox4ooo&#zxt (pex thex) | +----------------------- Xx ou3oo4oo&#zu (pex hex variant) +------------------------------ wx ox3oo4oo&#zx (pex hex) where: X = w+q = x+2q, w = x+q, u=2x |
Coordinates |
|
Face vector | 128, 448, 616, 352, 58 |
Confer |
|
This CRF polyteron can be obtained from tot by partial Stott expansion only within axial direction. In fact it comes down to the insertion of its medial segment, the thexip.
Incidence matrix according to Dynkin symbol
Xwx xux3oox3ooo4ooo&#zxt o.. o..3o..3o..4o.. | 16 * * | 6 1 0 0 0 0 | 12 6 0 0 0 0 0 | 8 12 0 0 0 0 | 1 8 0 0 .o. .o.3.o.3.o.4.o. | * 16 * | 0 1 6 0 0 0 | 0 6 12 0 0 0 0 | 0 12 8 0 0 0 | 0 8 1 0 ..o ..o3..o3..o4..o | * * 96 | 0 0 1 1 1 4 | 0 1 4 1 4 4 4 | 0 4 4 4 4 4 | 0 4 1 4 -------------------------+----------+--------------------+------------------------+--------------------+---------- ... x.. ... ... ... | 2 0 0 | 48 * * * * * | 4 1 0 0 0 0 0 | 4 4 0 0 0 0 | 1 4 0 0 oo. oo.3oo.3oo.4oo.&#x | 1 1 0 | * 16 * * * * | 0 6 0 0 0 0 0 | 0 12 0 0 0 0 | 0 8 0 0 .oo .oo3.oo3.oo4.oo&#x | 0 1 1 | * * 96 * * * | 0 1 4 0 0 0 0 | 0 4 4 0 0 0 | 0 4 1 0 ..x ... ... ... ... | 0 0 2 | * * * 48 * * | 0 0 0 1 4 0 0 | 0 0 0 4 4 0 | 0 0 1 4 ... ..x ... ... ... | 0 0 2 | * * * * 48 * | 0 1 0 1 0 4 0 | 0 4 0 4 0 4 | 0 4 0 4 ... ... ..x ... ... | 0 0 2 | * * * * * 192 | 0 0 1 0 1 1 2 | 0 1 2 1 2 2 | 0 2 1 2 -------------------------+----------+--------------------+------------------------+--------------------+---------- ... x..3o.. ... ... | 3 0 0 | 3 0 0 0 0 0 | 64 * * * * * * | 2 1 0 0 0 0 | 1 2 0 0 ... xux ... ... ...&#xt | 2 2 2 | 1 2 2 0 1 0 | * 48 * * * * * | 0 4 0 0 0 0 | 0 4 0 0 ... ... .ox ... ...&#x | 0 1 2 | 0 0 2 0 0 1 | * * 192 * * * * | 0 1 2 0 0 0 | 0 2 1 0 ..x ..x ... ... ... | 0 0 4 | 0 0 0 2 2 0 | * * * 24 * * * | 0 0 0 4 0 0 | 0 0 0 4 ..x ... ..x ... ... | 0 0 4 | 0 0 0 2 0 2 | * * * * 96 * * | 0 0 0 1 2 0 | 0 0 1 2 ... ..x3..x ... ... | 0 0 6 | 0 0 0 0 3 3 | * * * * * 64 * | 0 1 0 1 0 2 | 0 2 0 2 ... ... ..x3..o ... | 0 0 3 | 0 0 0 0 0 3 | * * * * * * 128 | 0 0 1 0 1 1 | 0 1 1 1 -------------------------+----------+--------------------+------------------------+--------------------+---------- ... x..3o..3o.. ... ♦ 4 0 0 | 6 0 0 0 0 0 | 4 0 0 0 0 0 0 | 32 * * * * * | 1 1 0 0 ... xux3oox ... ...&#xt ♦ 3 3 6 | 3 3 6 0 3 3 | 1 3 3 0 0 1 0 | * 64 * * * * | 0 2 0 0 ... ... .ox3.oo ...&#x ♦ 0 1 3 | 0 0 3 0 0 3 | 0 0 3 0 0 0 1 | * * 128 * * * | 0 1 1 0 ..x ..x3..x ... ... ♦ 0 0 12 | 0 0 0 6 6 6 | 0 0 0 3 3 2 0 | * * * 32 * * | 0 0 0 2 ..x ... ..x3..o ... ♦ 0 0 6 | 0 0 0 3 0 6 | 0 0 0 0 3 0 2 | * * * * 64 * | 0 0 1 1 ... ..x3..x3..o ... ♦ 0 0 12 | 0 0 0 0 6 12 | 0 0 0 0 0 4 4 | * * * * * 32 | 0 1 0 1 -------------------------+----------+--------------------+------------------------+--------------------+---------- ... x..3o..3o..4o.. ♦ 8 0 0 | 24 0 0 0 0 0 | 32 0 0 0 0 0 0 | 16 0 0 0 0 0 | 2 * * * ... xux3oox3ooo ...&#xt ♦ 4 4 12 | 6 4 12 0 6 12 | 4 6 12 0 0 4 4 | 1 4 4 0 0 1 | * 32 * * .wx ... .ox3.oo4.oo&#zx ♦ 0 2 12 | 0 0 12 6 0 24 | 0 0 24 0 12 0 16 | 0 0 16 0 8 0 | * * 8 * ..x ..x3..x3..o ... ♦ 0 0 24 | 0 0 0 12 12 24 | 0 0 0 6 12 8 8 | 0 0 0 4 4 2 | * * * 16
© 2004-2025 | top of page |