Acronym pextot Name partially expanded truncated triacontaditeron Circumradius ... Lace cityin approx. ASCII-art ``` o3o4o x3o4o o3o4o -- x3o3o4o (hex) o3o4o u3o4o o3o4o -- u3o3o4o (u-hex) x3o4o u3o4o x3x4o u3o4o x3o4o -- x3x3o4o (thex) x3o4o u3o4o x3x4o u3o4o x3o4o -- x3x3o4o (thex) o3o4o u3o4o o3o4o -- u3o3o4o (u-hex) o3o4o x3o4o o3o4o -- x3o3o4o (hex) | | | | +-- wx ox3oo4oo&#zx (pex hex) | | | +--------- Xx ou3oo4oo&#zu (pex hex variant) | | +---------------- Xwx xux3oox4ooo&#zxt (pex thex) | +----------------------- Xx ou3oo4oo&#zu (pex hex variant) +------------------------------ wx ox3oo4oo&#zx (pex hex) where: X = w+q = x+2q, w = x+q, u=2x ``` Coordinates (1/sqrt(2), 0, 0, 0; (1+2 sqrt(2))/2)     & all permutations within all but last coord, all changes of sign (sqrt(2), 0, 0, 0; (1+sqrt(2))/2)           & all permutations within all but last coord, all changes of sign (sqrt(2), 1/sqrt(2), 0, 0; 0)                 & all permutations within all but last coord, all changes of sign Confer uniform relative: tot   cappin   thexip   general polytopal classes: partial Stott expansions

This CRF polyteron can be obtained from tot by partial Stott expansion only within axial direction. In fact it comes down to the insertion of its medial segment, the thexip.

Incidence matrix according to Dynkin symbol

```Xwx xux3oox3ooo4ooo&#zxt

o.. o..3o..3o..4o..      | 16  *  * |  6  1  0  0  0   0 | 12  6   0  0  0  0   0 |  8 12   0  0  0  0 | 1  8 0  0
.o. .o.3.o.3.o.4.o.      |  * 16  * |  0  1  6  0  0   0 |  0  6  12  0  0  0   0 |  0 12   8  0  0  0 | 0  8 1  0
..o ..o3..o3..o4..o      |  *  * 96 |  0  0  1  1  1   4 |  0  1   4  1  4  4   4 |  0  4   4  4  4  4 | 0  4 1  4
-------------------------+----------+--------------------+------------------------+--------------------+----------
... x.. ... ... ...      |  2  0  0 | 48  *  *  *  *   * |  4  1   0  0  0  0   0 |  4  4   0  0  0  0 | 1  4 0  0
oo. oo.3oo.3oo.4oo.&#x   |  1  1  0 |  * 16  *  *  *   * |  0  6   0  0  0  0   0 |  0 12   0  0  0  0 | 0  8 0  0
.oo .oo3.oo3.oo4.oo&#x   |  0  1  1 |  *  * 96  *  *   * |  0  1   4  0  0  0   0 |  0  4   4  0  0  0 | 0  4 1  0
..x ... ... ... ...      |  0  0  2 |  *  *  * 48  *   * |  0  0   0  1  4  0   0 |  0  0   0  4  4  0 | 0  0 1  4
... ..x ... ... ...      |  0  0  2 |  *  *  *  * 48   * |  0  1   0  1  0  4   0 |  0  4   0  4  0  4 | 0  4 0  4
... ... ..x ... ...      |  0  0  2 |  *  *  *  *  * 192 |  0  0   1  0  1  1   2 |  0  1   2  1  2  2 | 0  2 1  2
-------------------------+----------+--------------------+------------------------+--------------------+----------
... x..3o.. ... ...      |  3  0  0 |  3  0  0  0  0   0 | 64  *   *  *  *  *   * |  2  1   0  0  0  0 | 1  2 0  0
... xux ... ... ...&#xt  |  2  2  2 |  1  2  2  0  1   0 |  * 48   *  *  *  *   * |  0  4   0  0  0  0 | 0  4 0  0
... ... .ox ... ...&#x   |  0  1  2 |  0  0  2  0  0   1 |  *  * 192  *  *  *   * |  0  1   2  0  0  0 | 0  2 1  0
..x ..x ... ... ...      |  0  0  4 |  0  0  0  2  2   0 |  *  *   * 24  *  *   * |  0  0   0  4  0  0 | 0  0 0  4
..x ... ..x ... ...      |  0  0  4 |  0  0  0  2  0   2 |  *  *   *  * 96  *   * |  0  0   0  1  2  0 | 0  0 1  2
... ..x3..x ... ...      |  0  0  6 |  0  0  0  0  3   3 |  *  *   *  *  * 64   * |  0  1   0  1  0  2 | 0  2 0  2
... ... ..x3..o ...      |  0  0  3 |  0  0  0  0  0   3 |  *  *   *  *  *  * 128 |  0  0   1  0  1  1 | 0  1 1  1
-------------------------+----------+--------------------+------------------------+--------------------+----------
... x..3o..3o.. ...      ♦  4  0  0 |  6  0  0  0  0   0 |  4  0   0  0  0  0   0 | 32  *   *  *  *  * | 1  1 0  0
... xux3oox ... ...&#xt  ♦  3  3  6 |  3  3  6  0  3   3 |  1  3   3  0  0  1   0 |  * 64   *  *  *  * | 0  2 0  0
... ... .ox3.oo ...&#x   ♦  0  1  3 |  0  0  3  0  0   3 |  0  0   3  0  0  0   1 |  *  * 128  *  *  * | 0  1 1  0
..x ..x3..x ... ...      ♦  0  0 12 |  0  0  0  6  6   6 |  0  0   0  3  3  2   0 |  *  *   * 32  *  * | 0  0 0  2
..x ... ..x3..o ...      ♦  0  0  6 |  0  0  0  3  0   6 |  0  0   0  0  3  0   2 |  *  *   *  * 64  * | 0  0 1  1
... ..x3..x3..o ...      ♦  0  0 12 |  0  0  0  0  6  12 |  0  0   0  0  0  4   4 |  *  *   *  *  * 32 | 0  1 0  1
-------------------------+----------+--------------------+------------------------+--------------------+----------
... x..3o..3o..4o..      ♦  8  0  0 | 24  0  0  0  0   0 | 32  0   0  0  0  0   0 | 16  0   0  0  0  0 | 2  * *  *
... xux3oox3ooo ...&#xt  ♦  4  4 12 |  6  4 12  0  6  12 |  4  6  12  0  0  4   4 |  1  4   4  0  0  1 | * 32 *  *
.wx ... .ox3.oo4.oo&#zx  ♦  0  2 12 |  0  0 12  6  0  24 |  0  0  24  0 12  0  16 |  0  0  16  0  8  0 | *  * 8  *
..x ..x3..x3..o ...      ♦  0  0 24 |  0  0  0 12 12  24 |  0  0   0  6 12  8   8 |  0  0   0  4  4  2 | *  * * 16
```